Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(A=\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
\(=\left[{}\begin{matrix}2\left(x\ge1\right)\\2\sqrt{2x-1}\left(\frac{1}{2}\le x< 1\right)\end{matrix}\right.\)
Để \(A< 1\Rightarrow\frac{1}{2}\le x< 1\)
\(2\sqrt{2x-1}< 1\Leftrightarrow\sqrt{2x-1}< \frac{1}{2}\Leftrightarrow2x< \frac{5}{4}\Rightarrow x< \frac{5}{8}\)
\(\Rightarrow\frac{1}{2}\le x< \frac{5}{8}\)
\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)
\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)
\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)
a) A xác định \(\Leftrightarrow\hept{\begin{cases}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\\x+\sqrt{x^2-2x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 0\\x\ge2\end{cases}}\)
b) \(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}=\frac{\left(x^2+x^2-2x+2x\sqrt{x^2-2x}\right)-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
c) \(A< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\Leftrightarrow x^2-2x< 1\Leftrightarrow x^2-2x-1< 0\Leftrightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)
Kết hợp với điều kiện A xác định được : \(2\le x\le1+\sqrt{2}\)
Vậy \(A< 2\Leftrightarrow2\le x\le1+\sqrt{2}\)
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
a) ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\2x\ge2\sqrt{2x-1}\end{cases}}\)\(\Leftrightarrow x\ge\frac{1}{2}\)
A=\(\sqrt{2x-1+1+2\sqrt{2x-1}}\)\(-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}\)\(-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
=\(\sqrt{2x-1}+1-|\sqrt{2x-1}-1|\)
Nếu \(x\ge1\)thì A=\(\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)\)=2.
Nếu \(\frac{1}{2}\le x< 1\)thì A=\(\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)\)=\(2\sqrt{2x-1}\).
b)A<1 thì \(\frac{1}{2}\le x< 1\)và \(2\sqrt{2x-1}< 1\)\(\Leftrightarrow4\left(2x-1\right)< 1\)\(\Leftrightarrow8x-4< 1\)\(\Leftrightarrow x< \frac{5}{8}\)(tm)
Vậy A<1 thì \(\frac{1}{2}\le x< \frac{5}{8}\).