K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)

10 tháng 8 2018

1. \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}.\dfrac{4}{\sqrt{a}}\right)=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{-64\sqrt{a}}{a-4}\)Nếu nhân tu thứ 2 của phép tính là \(\sqrt{a}-\dfrac{4}{\sqrt{a}}\) thì kết quả của phép tính là -16 nha bạn

10 tháng 8 2018

2.\(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(1-\dfrac{1}{\sqrt{a}}\right)=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{-\left(1-\sqrt{a}\right)}{\sqrt{a}}=\dfrac{-2\sqrt{a}}{\left(1+\sqrt{a}\right)\sqrt{a}}=\dfrac{-2}{1+\sqrt{a}}\)\(\left(a>0,a\ne1\right)\)

24 tháng 6 2017

bài 2 ) a) đk : \(a>0;b>0\)

b) P = \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)

P = \(\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

P = \(\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\) = \(a-b\)

c) ta có P = \(a-b\) thay \(a=2\sqrt{3};b=\sqrt{3}\) vào ta có

P = \(2\sqrt{3}-\sqrt{3}=\sqrt{3}\) vậy khi \(a=2\sqrt{3};b=\sqrt{3}\) thì P = \(\sqrt{3}\)

24 tháng 6 2017

bài 1) a) P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

P = \(\dfrac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-a^2\sqrt{a}+a^2-a+\sqrt{a}}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{2a+2}{\sqrt{a}}\)

P = \(\dfrac{2a^2-2a}{a^2-a}+\dfrac{2a+1}{\sqrt{a}}\) = \(\dfrac{2\left(a^2-a\right)}{a^2-a}+\dfrac{2a+2}{\sqrt{a}}\)

P = \(2+\dfrac{2a+2}{\sqrt{a}}\) = \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

b) ta có P = 7 \(\Leftrightarrow\) \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\) \(\Leftrightarrow\) \(2a+2\sqrt{a}+2=7\sqrt{a}\)

\(\Leftrightarrow\) \(2a-5\sqrt{a}+2=0\) (1)

đặc \(\sqrt{a}=u\) \(\left(u\ge0\right)\) (1) \(\Leftrightarrow\) \(2u^2-5u+2\)

\(\Delta=\left(-5\right)^2-4.2.2\) = \(25-16=9>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(u_1=\dfrac{5+3}{4}=\dfrac{8}{4}=2\left(tmđk\right)\)

\(u_2=\dfrac{5-3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\left(tmđk\right)\)

ta có : \(u=\sqrt{a}=2\Leftrightarrow x=4\)

\(u=\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)

vậy \(a=4;a=\dfrac{1}{4}\) thì P = 7

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

18 tháng 3 2021

P/s gọi a = x cho dễ viết nhé 

a, Với \(x\ge0;x\ne1;x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

chỗ này mình nghĩ ko phải trục căn thức đâu ha :D 

b, Ta có P > 1/6 hay \(\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Leftrightarrow\frac{\sqrt[]{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{6\sqrt{x}-12-3\sqrt{x}}{18\sqrt{x}}>0\Leftrightarrow\frac{3\sqrt{x}-12}{18\sqrt{x}}>0\)

\(\Leftrightarrow3\sqrt{x}-12>0\)( vì \(18\sqrt{x}>0\))

\(\Leftrightarrow3\sqrt{x}>12\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

Vậy \(x>16\)

cho mình hỏi đề có sai ko ? \(P< \frac{1}{6}\)mình nghĩ sẽ hợp lí hơn 

18 tháng 3 2021

んuリ イ hãy thuận theo ý thầy :)) và nhớ chú ý đến ĐKXĐ

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\div\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

Để P > 1/6 thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)

<=> \(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)

<=> \(\frac{2\sqrt{a}-4}{6\sqrt{a}}-\frac{\sqrt{a}}{6\sqrt{a}}>0\)

<=> \(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)

Dễ thấy \(6\sqrt{a}>0\forall x>0\)

=> \(\sqrt{a}-4>0\)<=> \(\sqrt{a}>4\)<=> \(a>16\)

Vậy với a > 16 thì P > 1/6

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

26 tháng 11 2018

hay mk sẽ giải nhưng co kq

21 tháng 11 2022

Bài 3:

\(C=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1+2}{a-1}\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{a-1}{\sqrt{a}+3}\)

\(=\dfrac{\left(a-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

12 tháng 7 2018

1/ đkxđ: a > 0; a khác 1

a/ A= (\(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\))\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{a-1}\)

\(=\dfrac{1}{2\sqrt{a}}\cdot\dfrac{-4a}{a-1}=-\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\sqrt{a}}{a+1}\)

b/+) A = 4

\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}=4\)\(\Leftrightarrow2\sqrt{a}=4a+4\)

=> Không có gt a nào t/m

+) \(A>-6\)

\(\Leftrightarrow\dfrac{2\sqrt{a}}{a+1}>-6\)

\(\Leftrightarrow2\sqrt{a}>-6a-6\)

\(\Leftrightarrow6a+2\sqrt{a}+6>0\) (luôn đúng vì a > 0)

=> bpt có nghiệm với mọi a > 0

vậy........

c/ \(a^2-3=0\Leftrightarrow\left[{}\begin{matrix}a=\sqrt{3}\left(tm\right)\\a=-\sqrt{3}\left(ktmđkxđ\right)\end{matrix}\right.\)

Với a = \(\sqrt{3}\) ta có:

\(A=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2}=\sqrt{3}\left(\sqrt{3}-1\right)=3-\sqrt{3}\)

30 tháng 4 2018

Bài 1:

a)Với x > 0;x ≠ 4 ta có:

\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4}{x-4}\)

c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)

30 tháng 4 2018

Bài 2:

a)Với a > 0;a ≠ 1;a ≠ 2 ta có

\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)

b)Ta có:

\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)

P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)

\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)

\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)

\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)

\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)

\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)

\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)

\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)

Vậy a = 6

4 tháng 10 2017

Câu 1 :

a ) \(\sqrt{0,36.100}=\sqrt{36}=6\)

b ) \(\sqrt[3]{-0,008}=\sqrt[3]{\left(-0,2\right)^3}=-0,2\)

c ) \(\sqrt{12}+6\sqrt{3}+\sqrt{27}=2\sqrt{3}+6\sqrt{3}+3\sqrt{3}=11\sqrt{3}\)

4 tháng 10 2017

Câu 2 :

a ) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)