Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)
\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)
b) CM \(\dfrac{1}{m^2+2}>0\)
ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)
\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)
vậy đpcm
c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)
dấu '=' xảy ra khi m=0
vậy \(A_{max}=\dfrac{1}{2}\) khi m=0
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
Bài 1:
a, Ta có:
\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)
\(\Leftrightarrow a=b=c=0\)
Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0
b, Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)
=> \(\left(a+b+c\right)^2=x+2y\)
Ta cũng có:
\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)
\(=a^2+b^2+c^2+ab+bc+ca\)
\(A=\dfrac{m^2+5m+n^2+5n+2mn-6}{m^2+6m+n^2+6n+2mn}\)
\(=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}\)
\(=\dfrac{2013^2+5\cdot2013-6}{2013^2+6\cdot2013}=\dfrac{2012}{2013}\)
a.
ĐKXĐ: \(x\ne2\)
b.
\(P=\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x^2+1}{x-2}\)
\(=\left(\dfrac{2x}{x-2}-\dfrac{x}{x-2}\right)\cdot\dfrac{x-2}{x^2+1}\)
\(=\dfrac{x}{x-2}\cdot\dfrac{x-2}{x^2+1}=\dfrac{x}{x^2+1}\)
c.
\(x=-1\Rightarrow P=-\dfrac{1}{\left(-1\right)^2+1}=-\dfrac{1}{2}\)
d.
\(P=\dfrac{x}{x^2+1}\cdot\dfrac{x^2+1}{x}-\dfrac{1}{P}\ge1-\dfrac{1}{P}\)
\(\Rightarrow\dfrac{P^2+1}{P}\ge1\)
\(\Rightarrow P^2+1\ge P\) \(\Rightarrow P\left(P-1\right)\ge1\)
\(\Rightarrow P\ge2\)
Dấu "=" khi x = ...................
Bài 2:
a: \(M=\dfrac{3x+1-2x-2}{\left(3x-1\right)\left(3x+1\right)}:\dfrac{3x+1-3x}{x\left(3x+1\right)}\)
\(=\dfrac{x-1}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{x\left(3x+1\right)}{1}=\dfrac{x\left(x-1\right)}{3x-1}\)
b: Để M=0 thì x(x-1)=0
=>x=1(nhận) hoặc x=0(loại)
c: \(P=M\cdot\left(3x-1\right)=x\left(x-1\right)=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/2
ĐKXĐ : \(x\ne0,x\ne\pm2\)
Câu a :
\(A=\left(\dfrac{1}{x-2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\left(\dfrac{2}{x}-1\right)\)
\(=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\times\dfrac{2-x}{x}\)
\(=-\dfrac{4}{x+2}\)
Câu b :
Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=0\) vào A ta được \(-\dfrac{4}{0+2}=-2\)
Thay \(x=-\dfrac{1}{2}\) vào A ta được \(-\dfrac{4}{-\dfrac{1}{2}+2}=-\dfrac{8}{3}\)
Câu c :
Để \(A=\dfrac{1}{2}\) thì \(-\dfrac{4}{x+2}=\dfrac{1}{2}\)
\(\Leftrightarrow x+2=-8\Leftrightarrow x=-10\)
Câu d :
Để A nguyên dương thì \(-4⋮x+2\)
Xét :
\(Ư\left(-4\right)=-4;-2;-1;1;2;4\)
\(\left\{{}\begin{matrix}x+2=-4\\x+2=-2\\x+2=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\left(N\right)\\x=-4\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+2=1\\x+2=2\\x+2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\left(N\right)\\x=0\left(L\right)\\x=2\left(L\right)\end{matrix}\right.\)
Vậy có 4 giá trị của x thì A nguyên : \(\left\{{}\begin{matrix}x=-6\\x=-4\\x=-3\\x=-1\end{matrix}\right.\)
A=(xx2−4+22−x+1x+2):((x−2)+10−x2x+2)A=(xx2−4+22−x+1x+2):((x−2)+10−x2x+2)
=(x(x−2)(x+2)−2x−2+1x+2):(x−2)(x+2)+10−x2x+2(x(x−2)(x+2)−2x−2+1x+2):(x−2)(x+2)+10−x2x+2
=x−2(x+2)+x−2(x−2)(x+2):x2−4+10−x2x+2x−2(x+2)+x−2(x−2)(x+2):x2−4+10−x2x+2
=x−2(x+2)+x−2(x−2)(x+2)−6(x−2)(x+2):6x+2:x2−4+10−x2x+2x−2(x+2)+x−2(x−2)(x+2)−6(x−2)(x+2):6x+2:x2−4+10−x2x+2
=−6(x−2)(x+2).x+26−6(x−2)(x+2).x+26
=−1x−2=12−x−1x−2=12−x
b) Giá trị của A tại |x|=12|x|=12
Nếu x=12x=12 thì A=12−12=132=23A=12−12=132=23
Nếu x=−12x=−12 thì A=12−(−12)=12+12=152=25A=12−(−12)=12+12=152=25
c) A < 0 khi 2 – x < 0 hay x > 2
d)Để A=0
a)
\(A=\left(\dfrac{m^2-mn}{m^2+mn}-\dfrac{m}{m+n}\right):\left(\dfrac{mn}{m^3-mn^2}+\dfrac{1}{m+n}\right)\)
\(A=\left[\dfrac{m\left(m-n\right)}{m\left(m+n\right)}-\dfrac{m}{m+n}\right]:\left[\dfrac{mn}{m\left(m^2-n^2\right)}+\dfrac{1}{m+n}\right]\)
\(A=\left(\dfrac{m-n}{m+n}-\dfrac{m}{m+n}\right):\left[\dfrac{mn}{m\left(m-n\right)\left(m+n\right)}+\dfrac{1}{m+n}\right]\)
\(A=\left(\dfrac{m-n-m}{m+n}\right):\left[\dfrac{n}{\left(m-n\right)\left(m+n\right)}+\dfrac{1}{m+n}\right]\)
\(A=\left(-\dfrac{n}{m+n}\right):\left[\dfrac{n}{\left(m-n\right)\left(m+n\right)}+\dfrac{m-n}{\left(m-n\right)\left(m+n\right)}\right]\)
\(A=\left(-\dfrac{n}{m+n}\right):\left[\dfrac{n+m-n}{\left(m-n\right)\left(m+n\right)}\right]\)
\(A=\left(-\dfrac{n}{m+n}\right):\left[\dfrac{m}{\left(m-n\right)\left(m+n\right)}\right]\)
\(A=\left(-\dfrac{n}{m+n}\right).\left[\dfrac{\left(m-n\right)\left(m+n\right)}{m}\right]\)
\(A=\dfrac{-n\left(m-n\right)\left(m+n\right)}{\left(m+n\right)m}\)
\(A=\dfrac{-n\left(m-n\right)}{m}\)
b)
Để A bằng 0 thì -n ( m - n ) phải bằng 0
=> -n = 0 hoặc m - n = 0
Vậy A có thể bằng 0 với -n = 0 hoặc m = n
c) Để \(|A|>A\) thì A phải có giá trị âm
=> \(\dfrac{-n\left(m-n\right)}{m}\) phải có giá trị âm
=> -n ( m - n ) và m phải trái dấu
=> Ta có hai trường hợp
TH1: -n ( m - n ) có giá trị âm thì m có giá trị dương
=> Dấu của n là dấu âm, dấu của m là dấu dương
TH2: -n ( m - n ) có giá trị dương thì m có giá trị âm
=> Dấu của n là dấu dương, dấu của m là dấu âm
Mình làm có khi không đúng nên nếu sai mong bạn thông cảm
cảm ơn nha