Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
a: ĐK của A là x<>-3; x<>2
ĐKXĐ của B là x<>3
DKXĐ của C là x<>0; x<>4/3
ĐKXĐ của D là x<>-2
ĐKXĐ của E là x<>2; x<>-2
ĐKXĐ của F là x<>2
b,c:
\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
Để A=0 thì 2=0(loại)
\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
Để B=0 thì x+3=0
=>x=-3
\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
Để C=0 thì 3x+4=0
=>x=-4/3
\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
Để D=0 thì x+2=0
=>x=-2(loại)
\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)
Để E=0 thì x=0
\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
Để F=0 thì 3=0(loại)
a: \(A=\dfrac{x^2+x+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x^2+2x}{\left(x-1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{\left(x^2+2\right)\left(x+1\right)}{\left(2x+1\right)\left(x-1\right)}\)
b: Khi x=2 thì \(A=\dfrac{\left(4+2\right)\left(2+1\right)}{\left(2\cdot2+1\right)\left(2-1\right)}=\dfrac{18}{5}\)
a: \(A=\left(1+x+x^2-x\right):\dfrac{1-x^2}{x^3-x^2-x+1}\)
\(=\left(x^2+1\right)\cdot\dfrac{\left(x-1\right)\left(x^2-1\right)}{-\left(x^2-1\right)}=\left(1-x\right)\left(x^2+1\right)\)
b: Khi x=-5/3 thì \(A=\left(1+\dfrac{5}{3}\right)\left(\dfrac{25}{9}+1\right)=\dfrac{8}{3}\cdot\dfrac{34}{9}=\dfrac{272}{27}\)
c: Để A<0 thì 1-x<0
hay x>1
a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)
b: 2x^2+x=0
=>x(2x+1)=0
=>x=0(loại) hoặc x=-1/2(nhận)
Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)
c: Để A=1/2 thì -4/x+2=1/2
=>x+2=-2
=>x=-4
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
Lời giải:
a.
\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)
\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)
b.
Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$
c.
$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$
$\Leftrightarrow 4x^2=x-3$
$\Leftrightarrow 4x^2-x+3=0$
$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)
Vậy không tồn tại $x$
d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên
$\Leftrightarrow 4x^2\vdots x-3$
$\Leftrightarrow 4(x^2-9)+36\vdots x-3$
$\Leftrightarrow 36\vdots x-3$
$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$
Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.
e.
$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$
$\Leftrightarrow \frac{x^2}{x-3}>1$
$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$
$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)
$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$