Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số nguyên âm lớn nhất là -1 => y = -1
Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:
\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)= \(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)= \(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)
= \(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)= \(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)= \(\frac{-37}{8}\left(\frac{-4}{3}\right)\)= \(\frac{37}{6}\)
Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)
b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
a, Gọi A = 4a+2b−ca−b−c
Đặt a2 =b5 =c7 =k⇒{
a=2k |
b=5k |
c=7k |
=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110
b, Ta có: {
x2≥0 |
|y−3|≥0 |
∀x,y⇒A=x2+|y−3|+5≥5
Dấu "=" xảy ra khi {
x2=0 |
|y−3|=0 |
⇒{
x=0 |
y=3 |
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)