\(\frac{x+2}{x-1}\)\(\times\)(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Ta có : \(4x^2=1\)

\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào B , ta được:

\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)

Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)

b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)

\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)

\(=\frac{x}{x+1}\)

Vậy \(M=\frac{x}{x+1}\)

c)Ta có: \(x< x+1\forall x\)

\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)

Vậy với mọi \(x\ne-1\)thì \(M< 1\)

21 tháng 5 2021

2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)

Khi |x - 1| = 2

=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)

Khi x = - 1 (không thỏa mãn) => Không tìm được A 

b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)

Đẻ P < 8

=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)

=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)

Vậy x > - 1 thì P < 8 

21 tháng 5 2021

Thay x = 1/2 vào 

21 tháng 5 2021

Do : \(4x^2=1\)

\(< =>\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Ta thấy điều kiện xác định của B là \(x\ne-\frac{1}{2}\)

Suy ra  \(x=\frac{1}{2}\)

Ta có : \(B=\frac{x^2-x}{2x+1}=\frac{\frac{1}{4}-\frac{1}{2}}{\frac{1}{2}.2+1}=\frac{\frac{-1}{4}}{2}=-\frac{1}{8}\)

Vậy ......

21 tháng 5 2021

Ta có : \(A=\frac{1}{x-1}+\frac{x}{x^2-1}=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{x^2-1}\)

Suy ra \(M=\frac{2x+1}{x^2-1}.\frac{x^2-x}{2x+1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x}{x+1}\)

30 tháng 4 2021

#muon roi ma sao con 

a, Thay x = 3 vào A ta được ; \(A=\frac{3-1}{9}=\frac{2}{9}=\frac{1}{3}\)

b, Với \(x\ne0;-\frac{1}{2};1\)

\(B=\frac{1}{x}-\frac{x}{2x+1}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(=\frac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}=\frac{x^2-x}{x\left(2x+1\right)}=\frac{x-1}{2x+1}\)

c, Ta có : \(C=\frac{A}{B}\Rightarrow C=\frac{x-1}{x^2}:\frac{x-1}{2x+1}=\frac{2x+1}{x^2}\ge-1\)

\(\Leftrightarrow\frac{2x+1}{x^2}+\frac{x^2}{x^2}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x^2}\ge0\forall x\)( đpcm ) 

30 tháng 4 2021

1. Thay x = 3 vào biểu thức A, ta có:

\(A=\frac{3-1}{3^2}=\frac{4}{9}\)

2. \(B=\frac{1}{x}-\frac{x}{2x+1}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(B=\frac{2x+1}{x\left(2x+1\right)}-\frac{x^2}{x\left(2x+1\right)}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(B=\frac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}\)

\(B=\frac{x^2-x}{x\left(2x+1\right)}\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2