K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

ĐKXĐ: \(x^2-y^2\ne0\Rightarrow\left(x-y\right).\left(x+y\right)\ne0\Rightarrow x\ne y,x\ne-y\)

\(A=\frac{x^2+2x+1-\left(y^2+2y+1\right)}{x^2-y^2}=\frac{\left(x+1\right)^2-\left(y+1\right)^2}{\left(x-y\right).\left(x+y\right)}\)

\(\frac{\left(x+1-y-1\right).\left(x+1+y+1\right)}{\left(x+y\right).\left(x-y\right)}=\frac{\left(x-y\right).\left(x+y+2\right)}{\left(x-y\right).\left(x+y\right)}=\frac{x+y+2}{x+y}\)

tự tính nha =)

31 tháng 12 2018

\(A=\frac{x^2+2x-y^2-2y}{x^2-y^2}\)

\(a,ĐKXĐ:x^2-y^2\ne0\Leftrightarrow x\ne\pm y\)

\(b,A=\frac{x^2+2x+1-y^2-2y-1}{\left(x-y\right)\left(x+y\right)}\)

\(A=\frac{\left(x+1\right)^2-\left(y+1\right)^2}{\left(x-y\right)\left(x+y\right)}\)

\(A=\frac{\left(x+1-y-1\right)\left(x+1+y+1\right)}{\left(x-y\right)\left(x+y\right)}\)

\(A=\frac{\left(x-y\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x+y+2}{x+y}\)

\(c,\)Thay \(x=-\frac{1}{2};y=\frac{1}{3}\)vô A

\(A=\frac{-\frac{1}{2}+\frac{1}{3}+2}{-\frac{1}{2}+\frac{1}{3}}=\frac{ }{ }\)

Vậy A = ............ khi x = -1/2;y=1/3

6 tháng 1 2021

a) Phân thức A được xác định khi: \(x^2-1\ne0\Rightarrow\left(x-1\right)\left(x+1\right)\ne0\Rightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

Vây ĐKXĐ của A là \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

b)Ta có: \(A=\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)}{\left(x-1\right)}\)

Vậy \(A=\dfrac{x+1}{x-1}\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

c) Ta có A=2 <-> \(\dfrac{x+1}{x-1}=2\Leftrightarrow x+1=2\left(x-1\right)\Leftrightarrow x+1=2x-2\)

\(\Leftrightarrow x+1-2x+2=0\Leftrightarrow3-x=0\Rightarrow x=3\)

Vậy khi x=3 thì A=2

8 tháng 1 2021

a) A đc xác định <=>2x+4\(\left\{{}\begin{matrix}2x+4\ne0\\x^2-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

 

8 tháng 1 2021

câu b bn quy đòng mẫu là đc

 

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

c: Thay x=2 vào A, ta được:

\(A=\dfrac{2+1}{2-1}=3\)

d: Để A=2 thì x+1=2x-2

=>-x=-3

hay x=3(nhận)

2 tháng 12 2017

ib tui làm cho 

21 tháng 8 2023

a) ĐK: \(x\ne4,x\ne2;x\ne-2\)

b) \(A=\dfrac{x^3}{x-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

\(A=\dfrac{x^3}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-2x-2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{\left(x-1\right)\left(x^2-4\right)}{x^2-4}\)

\(A=x-1\)

c) \(A=0\) khi:

\(x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

d) A dương khi: \(A>0\)

\(x-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp với đk: 

\(x>1,x\ne4,x\ne2\)

2 tháng 1 2023

a) Biểu thức A xác định `<=>x^2-1 ne 0 <=> (x-1)(x+1) ne 0 <=> x ne +-1`

b) `A=(x^2-3x-4)/(x^2 -1) = (x^2+x-4x-4)/(x^2-1) = (x(x+1)-4(x+1))/(x^2-1)`

`= ((x+1)(x-4))/((x+1)(x-1))=(x-4)/(x-1)`

c) `A` là số nguyên `<=> (x-4) vdots\ (x-1)`

`<=>[(x-1)-3] vdots\ (x-1)`

`<=> -3\ vdots\ (x-1)`

`<=> (x-1)\ in\ Ư(-3)`

`<=>(x-1)\ in\ {-3;-1;3;1}`

`<=>x\ in\ {-2;0;4;2}`

Vậy...

 

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)

c: Để A là số nguyên thì x-1-3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)