Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Huỳnh Thoại m ghi thế bố t cx chả hỉu k it lm ns luôn đi lại còn bày đặt giỏi đã ngu còn tỏ ra ngu hơn
a, \(A=\left(\frac{x}{x+3}+\frac{x}{x-3}-\frac{2}{x^2-9}\right).\frac{x+3}{2x-2}\)
\(=\frac{x^2-3x+x^2+3x-2}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2\left(x-1\right)}=\frac{2\left(x-1\right)\left(x+1\right)\left(x+3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+3\right)}=\frac{x+1}{x-3}\)
Ta có : A = 2 hay \(\frac{x+1}{x-3}=2\Rightarrow x+1=2x-6\Leftrightarrow-x=-7\Leftrightarrow x=7\)(tmđk )
b, \(A< 0\Rightarrow\frac{x+1}{x-3}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}}}\)( vô lí )
TH2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow-1< x< 3}}\)
Kết hợp với đk ta được -1 < x < 3 ; x khác 1
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
a)đkxđ: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(B=\frac{x^2-x+1}{x^2+2x+1}=\frac{x^2+2x+1-3x}{x^2+2x+1}=1-\frac{3x}{\left(x+1\right)^2}=1-\frac{3\left(x+1\right)-3}{\left(x+1\right)^2}\)
\(B=1-\frac{3}{x+1}+\frac{3}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow B=3a^2-3a+1=3\left(a^2-a+\frac{1}{3}\right)=3\left(a^2-2a.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow B\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}\Leftrightarrow x+1=2\Leftrightarrow x=1\left(nhận\right)\)
Vậy GTNN của B là \(\frac{1}{4}\)khi \(x=1\)
b) đkxđ \(x-1\ne0\Leftrightarrow x\ne1\)\(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2x+3}{x^2-2x+1}=3-\frac{2x-3}{\left(x-1\right)^2}=3-\frac{2\left(x-1\right)-1}{\left(x-1\right)^2}\)
\(=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(\frac{1}{x-1}=b\)\(\Rightarrow E=b^2-2b+3=b^2-2b+1+2=\left(b-1\right)^2+2\)
Vì \(\left(b-1\right)^2\ge0\Leftrightarrow B\ge2\)
Dấu "=" xảy ra khi \(b-1=0\Leftrightarrow b=1\Leftrightarrow\frac{1}{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(nhận\right)\)
Vậy GTNN của B là 2 khi x = 2
\(A=\frac{x^2-2x+2013}{x^2}=\frac{x^2}{x^2}-\frac{2x+2013}{x^2}=1-\frac{2x+2013}{x^2}\)
Có: \(x^2\ge0\)
=> \(\frac{2x+2013}{x^2}\ge0\)
=> \(1-\frac{2x+2013}{x^2}\le1\)
=> \(\frac{x^2-2x+2013}{x^2}\le1\)
=> \(A_{max}=1\)khi \(1-\frac{2x+2013}{x^2}=1\)
=> \(\frac{2x+2013}{x^2}=0\)=> \(x=-1006,5\)
Hình như bạn lộn đề rồi chứ không tìm được \(A_{min}\)
có khi nào bạn nhầm ko chứ đề đúng mà