Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
Để \(A=\frac{3}{x+2}\) đạt được giá trị nguyên
=> 3 chia hết x+2
=> \(x+2\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> Ta lập được bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy để \(A=\frac{3}{x+2}\) thì x = {-1;-3;1;-5}
CHÚC BẠN HỌC TỐT
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d
a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A ≠ - 1
b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )
Vì a2 + a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d
Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau
⇒ Biểu thức A là phân số tối giản