Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)
\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)
\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)
\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)
\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)
\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy \(Q\in Z\Leftrightarrow x=1\)