K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2023

\(a,\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{x^2-4}\)

\(=\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x-2x^2-4x+x^2+12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-6x+12}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-6}{x-2}\)

\(b,\) Để \(A\in Z\) thì \(\dfrac{-6}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Vậy \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)