Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.....\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)
\(=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}\)
\(\)\(=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)
\(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{9.11}{10.10}\)
\(=\dfrac{1.3.2.4.3.5.4.6....9.11}{2.2.3.3.4.4.5.5.....10.10}\)
\(=\dfrac{\left(1.2.3.4.5....9\right).\left(2.3.4.5.6.....11\right)}{\left(2.3.4.5.6.....10\right)\left(2.3.4.5.6.....10\right)}\)
\(=\dfrac{11}{10}\)
= \(49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4949}{102}\notin N\)
Vậy \(S\notin N\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{4}+1-\dfrac{1}{9}+1-\dfrac{1}{16}+...+1-\dfrac{1}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)
\(\Rightarrow S=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Từ 2-50 có 49 số nên có 49 số 1
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< 49\)
Nhận xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\) (2)
Từ (1) và (2) \(\Rightarrow48< S< 49\)
Vậy \(S\notin N\)
A)0,25:(10,3-9,8)-3/4
=1/4:(103/10-49/5)-3/4
=1/4:1/2-3/4
=1/2-3/4
=2/4-3/4
=-1/4
B)-5/9.13/28-13/28.4/9
=-5/9-4/9.13/28
=-1.13/28
=-13/28
c)6/7+5/8:5-3/16
=6/7+1/8-3/16
=55/56-3/16
=89/112
d)-5/7.2/11+-5/7.9/11+1/5/7
=-5/7.(2/11+9/11)+12/7
=-5/7.1+12/7
=-5/7+12/7
=1
e)-7/12-8/15+11/20
=-67/60+11/20
=-17/30
f)-17/25.20/33+-17/25.13/33+-3/25
=-17/25.(20/33+13/33)-3/25
=-17/25.1-3/25
=-17/25-3/25
=-4/5
CHÚC BẠN HỌC TỐT...............
NẾU ĐÚNG THÌ TICK CHO MK VỚI NHA HELLO HELLO..........
a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)
\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)
b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)
\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)
c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)
\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)
e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)
Tham khảo :
3.98.1615.....100009999
=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}=2.21.3.3.32.4.4.43.5.....100.10099.101
=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}=(2.3.4.....100)(1.2.3.....99).(2.3.4.....100)(3.4.5.....101)
=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}=1001.2101=200101