Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
Bài 2: a) Ta có: Q=\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) -\(\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\) =\(\dfrac{1}{\sqrt{x}-1}\) -\(\left(\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\left(\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) =
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
Bài 1:
\(M=\dfrac{9}{\sqrt{11}-\sqrt{2}}-\dfrac{\sqrt{22}-\sqrt{10}}{\sqrt{11}-\sqrt{5}}-\dfrac{22}{\sqrt{11}}\)
\(=\dfrac{9\left(\sqrt{11}+\sqrt{2}\right)}{11-2}-\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{5}\right)\left(\sqrt{11}+\sqrt{5}\right)}{11-5}-\dfrac{2.\left(\sqrt{11}\right)^2}{\sqrt{11}}\)
\(=\sqrt{11}+\sqrt{2}-\sqrt{2}-2\sqrt{11}=-\sqrt{11}\)
\(M=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+\dfrac{a-b}{\sqrt{a}+\sqrt{b}}+\dfrac{2b}{\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(\sqrt{b}\right)^2}{\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}+\sqrt{a}-\sqrt{b}+2\sqrt{b}=2\sqrt{a}\)
Bài 2:
a)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(M=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2}{\sqrt{x}+1}\) (*)
b)
Thay x = 0,25 vào (*), ta có:
\(M=\dfrac{2}{\sqrt{\dfrac{1}{4}}+1}=\dfrac{4}{3}\)
c)
\(M\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\ge1\)
\(\Leftrightarrow2\ge\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\le1\)
\(\Leftrightarrow x\le1\)
mà x khác 1 và x > 0(theo ĐKXĐ)
=> 0 < x < 1 thì M \(\ge\) 1
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\right)\) \(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\right)\) \(\Leftrightarrow A=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\right)=\dfrac{1}{\sqrt{x}+2}\)b) ta có : khi \(x=4+2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(\Rightarrow\sqrt{A}=\sqrt{\dfrac{1}{\sqrt{3}+1+2}}=\sqrt{\dfrac{1}{3+\sqrt{3}}}\)
ĐKXĐ : \(x\ne1;x\ne0;x>0\)
a) \(A=\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\cdot\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\dfrac{x-1}{\sqrt{x}}\right)\)
\(=\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4x\sqrt{x}-4\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}}{\sqrt{x}}=4x\)
b) \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{\sqrt{6}\cdot\left(2-\sqrt{6}\right)}{-2}=\dfrac{2\sqrt{6}-6}{-2}=3-\sqrt{6}\)
Suy ra : \(A=4\cdot\left(3-\sqrt{6}\right)=12-4\sqrt{6}\)
c) \(\sqrt{A}>A\Leftrightarrow\sqrt{4x}>4x\)
\(\Leftrightarrow2\sqrt{x}>4x\)
\(\Leftrightarrow2\sqrt{x}-4x>0\)
\(\Leftrightarrow2\sqrt{x}\cdot\left(1-2\sqrt{x}\right)>0\)
\(\Rightarrow1-2\sqrt{x}>0\) (do x > 0 nên \(2\sqrt{x}>0\))
\(\Leftrightarrow1>2\sqrt{x}\)
\(\Leftrightarrow\dfrac{1}{2}>\sqrt{x}\Rightarrow x< \dfrac{1}{4}\)
Theo điều kiện suy ra giá trị của x để \(\sqrt{A}>A\) là \(0< x< \dfrac{1}{4}\)
a) \(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{x-1}{\sqrt{x}}\)
\(=\left(\dfrac{2\cdot2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\left(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4\sqrt{x}\cdot\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=4\sqrt{x}\cdot\left[1+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]\cdot\dfrac{1}{\sqrt{x}}\)
\(=4\left(1+x-1\right)\)
\(=4x\)
b) Thay \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) vào biểu thức A.
Ta có:
\(4\cdot\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}\cdot\left(2-\sqrt{6}\right)}{-2}\\ =-2\sqrt{6}\cdot\left(2-\sqrt{6}\right)=-4\sqrt{6}+12\)
Vậy giá trị biểu thức A tại \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) là \(-4\sqrt{6}+12\)
c) Để \(\sqrt{A}>A\)
\(\Rightarrow\sqrt{4x}>4x\)
\(\Leftrightarrow\sqrt{4x}>4x\left(đk:x\ge0\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A = \(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(\Leftrightarrow A=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}+1}{2\left(x-1\right)}-\dfrac{\sqrt{x}-1}{2\left(x-1\right)}-\dfrac{2\sqrt{x}}{2\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{2\left(1-\sqrt{x}\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{1}{\sqrt{x}+1}\)
b) Khi \(x=\dfrac{4}{9}\) (thảo mãn ĐKXĐ) thì giá trị của A là:
\(A=-\dfrac{1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{\dfrac{4}{9}}+1}=-\dfrac{3}{5}\)
Vậy .....
c)
+) Khi \(A=-\dfrac{1}{2}\) thì ta có:
\(A=-\dfrac{1}{\sqrt{x}+1}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=1\) (Loại do không thỏa mãn ĐKXĐ)
+) Khi \(A=\dfrac{-1}{4}\) thì ta có:
\(A=-\dfrac{1}{\sqrt{x}+1}=-\dfrac{1}{4}\)
\(\Leftrightarrow x=9\) (thỏa mãn)
Vậy để A = \(-\dfrac{1}{4}\) thì x = 9
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
= \(\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}+\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{2-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{-1}{\sqrt{x}+1}\)
b/
Thay \(x=\dfrac{4}{9}\) vào A ta được:
\(A=\dfrac{-1}{\sqrt{\dfrac{4}{9}}+1}=\dfrac{-1}{\dfrac{2}{3}+1}=\dfrac{-3}{5}\)
Vậy khi \(x=\dfrac{4}{9}\) thì \(A=\dfrac{-3}{5}\)
c/ Với \(x\ge0,x\ne1\)
* Để \(A=\dfrac{-1}{2}\Leftrightarrow\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\)
\(\Leftrightarrow-2=-\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\) ( ktmđk)-Loại
Vậy không có giá trị nào của x thỏa mãn \(A=\dfrac{-1}{2}\)
* Để \(A=\dfrac{-1}{4}\Leftrightarrow\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{4}\)
\(\Leftrightarrow-4=-\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\) (tmđk)
Vậy để \(A=\dfrac{-1}{4}\) thì \(x=9\)