Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
a) ĐẶT \(A=\frac{7n-8}{2n-3}=\frac{7n-\frac{21}{2}+\frac{5}{2}}{2n-3}=\frac{\frac{7}{2}\left(2n-3\right)+\frac{5}{2}}{2n-3}=\frac{7}{2}+\frac{\frac{5}{2}}{2n-3}\)
Để A có GTLN\(\Leftrightarrow\frac{\frac{5}{2}}{2n-3}\)có GTLN
\(\Leftrightarrow2n-3\)có GTNN \(2n-3>0\)
\(\Leftrightarrow2n-3=1\)
\(\Leftrightarrow2n=4\)
\(\Leftrightarrow n=2\)
Vậy A có GTLN là 6 khi x=2
b) Ta có: \(\left(5a-3b+12\right)\left(2a-7b+3\right)⋮5\)
MÀ \(\left(5a-3b+12\right)̸⋮5\)(vì 12 ko chia hết cho 5)
\(\Rightarrow2a-7b+3⋮5\)
\(2a-2b-5b+3⋮5\)
MÀ \(5b⋮5\)
\(\Rightarrow2a-2b+3⋮5\)
Và \(40a-10⋮5\)
\(\Rightarrow2a-2b+3+40a-10⋮5\)
\(\Rightarrow42a-2b-7⋮5\left(ĐPCM\right)\)
a ) Để \(A=\frac{2n+2}{2n-4}\) là phân số <=> \(2n-4\ne0\Rightarrow n\ne2\)
b ) \(A=\frac{2n+2}{2n-4}=\frac{\left(2n-4\right)+6}{2n-4}=1+\frac{6}{2n-4}\)
=> 2n - 4 là ước của 6 => Ư(6) = { - 6; - 3; - 2; - 1; 1; 2 ; 3 ; 6 }
Mà 2n - 4 = 2(n - 2) là số chẵn => 2n - 4 = { - 6; - 2 ; 2 ; 6 }
Ta có : 2n - 4 = - 6 <=> 2n = - 2 => n = - 1 (TM)
2n - 4 = - 2 <=> 2n = 2 => n = 1 (TM)
2n - 4 = 2 <=> 2n = 6 => n = 3 (TM)
2n - 4 = 6 <=> 2n = 10 => n = 5 (TM)
Vậy n = { - 1; 1; 3; 5 } thì A là số nguyên