K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

(14-x)/(4-x)

TH1:14-x=0                   TH2:4-x=0

x+14-0=14                    x=4-0=4

vì 14>4 => x=4 là giá trị nhỏ nhất 
 

5 tháng 12 2023

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

22 tháng 12 2021

3r3reR

1 tháng 11 2020

\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)

Dấu = xảy ra \(< =>2012\le x\le2013\)

1 tháng 11 2020

\(|x-2012|+|x-2013|\)    

\(=|x-2012|+|-\left(2013-x\right)|\)   

\(=|x-2012|+|2013-x|\)    

Ta có 

\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)    

\(|x-2012|+|2013-x|\ge1\)   

Dấu = xảy ra  

\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)    

TH 1 : 

\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)    

\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)    

\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\)   \(\Rightarrow2012\le x\le2013\)   

TH 2 

\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)   

\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)   

\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\)    \(\Rightarrow x=\varnothing\)    

Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)

11 tháng 11 2017

Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)

\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)

Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)

Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)

Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)

Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)

Vậy GTNN  của A là 4 khi và chỉ khi \(-7\le x\le3\)

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được