Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(14-x)/(4-x)
TH1:14-x=0 TH2:4-x=0
x+14-0=14 x=4-0=4
vì 14>4 => x=4 là giá trị nhỏ nhất
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)
Dấu = xảy ra \(< =>2012\le x\le2013\)
\(|x-2012|+|x-2013|\)
\(=|x-2012|+|-\left(2013-x\right)|\)
\(=|x-2012|+|2013-x|\)
Ta có
\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)
\(|x-2012|+|2013-x|\ge1\)
Dấu = xảy ra
\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)
TH 1 :
\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\) \(\Rightarrow2012\le x\le2013\)
TH 2
\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)
Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)
\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)
Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)
Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)
Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)
Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)
Vậy GTNN của A là 4 khi và chỉ khi \(-7\le x\le3\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.