Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a, Để A là phân số thì \(n-3\ne0\Rightarrow n\ne3\)
b, Để \(A\in Z\)
\(\Rightarrow\dfrac{6}{n-3}\in Z\\ \Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng
n-3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -3 | 0 | 1 | 2 | 4 | 5 | 6 | 9 |
Vậy \(n\in\left\{-3;0;1;2;4;5;6;9\right\}\)
a) Để A là phân số thì
\(n+2\ne0=>n\ne-2\)2
b) Zới n=0 (TMĐK) thì biểu phân A là
\(\frac{3}{n+2}=>\frac{3}{0+2}=\frac{3}{2}\)
zậy phân số A là \(\frac{3}{2}\)khi n=0
mấy cái kia tương tự
Cho biểu thức A = 3/n+2
a)số nguyên n phải thỏa mãn điều kiện gì để A là phân số
Diều kiện: \(n+2\ne0\Leftrightarrow n\ne-2\)
b)tính giá trị của A khi n=3
Thay n=3 vào A ta được;
A=\(\frac{3}{3+2}=\frac{3}{5}\)
c)tìm các số nguyên n để A là một số nguyên
Để A là số nguyên thì: \(3⋮n+2\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy .....
a) Để A là phân số khi n khác -2 (n nguyên)
b) Với n = 0 suy ra A=3/0+2=3/2
Với n=2 suy ra A=3/4
Với n=7 suy ra A=1/3
mình cũng ko biết câu này