Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$
$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$
$\Rightarrow A+3A=3^{2012}+3$
$\Rightarrow 4A=3^{2012}+3$
$\Rightarrow A=\frac{3^{2012}+3}{4}$
b.
Từ phần a suy ra $4A-3=3^{2012}$
Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$
$\Rightarrow 81^{503}=81^x$
$\Rightarrow x=503$
c.
$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$
$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$
$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$
$=3+7(-3^2+3^5-3^8+....+3^{2009})$
$\Rightarrow A$ chia 7 dư 3.
d.
$4A=3^{2012}+3$
Có: $3^2\equiv -1\pmod {10}$
$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$
$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$
$\Rightarrow 4A$ có tận cùng là 4
$\Rightarrow A$ có tận cùng là 1.
a) Với 7n là số lẻ với n \(\in\) N*
Mà tổng A có 8 số hạng đều là số lẻ
Do đó : A là số chẵn
b) Ta có
A = ( 7 + 73 ) + ( 72 + 74 ) + ( 75 + 77 ) + ( 76 + 78 )
= 7 ( 1 + 72 ) + 72 ( 1 + 72 ) + 75 ( 1 + 72 ) + 76 ( 1 + 72 )
= 7 . 50 + 72 . 50 + 75 . 50 + 76 . 50
= 50 ( 7 + 72 + 75 + 76 )
Vì 50 \(\vdots\) 5 => A \(\vdots\) 5
c) Ta có :
A = 50 ( 7 + 72 + 75 + 76 ) = \(\overline{....0}\)
Vậy A có tận cùng là 0
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
32015=3.32014=3.(32)1007=3.91007=3.(...9)=(...7)
Suy ra chữ số tận cùng của A là 7
3^15 đồng dư với 7 (modul 10)
3^10 đồng dư với 9 (modul 10)
3^100 đồng dư với 1 (modul 10)
3^2000 đông dư với 1 (modul 10)
Vậy 3^15.3^2000 đông dư với 7.1=7 (modul 10)
Suy ra chữ số tận cùng của 3^2015 là 7
bạn tách dãy thành hiệu của tổng các lũy thừa có số mũ chẵn và tổng của các số mũ lẻ là xong ;)