\(A=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

ĐK : \(x\ne0;-1;2\)

a) \(A=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(A=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(A=1+\frac{x+1+x+1-2\left(x^2-x+1\right)}{x^3+1}\cdot\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)

\(A=1+\frac{-2x^2\left(x-2\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)\cdot x^2\left(x-2\right)}\)

\(A=1+\frac{-2}{x+1}\)

\(A=\frac{x-1}{x+1}\)

b) Để \(A\in Z\)\(\Leftrightarrow x-1⋮x+1\)

\(\Leftrightarrow x+1-2⋮x+1\)

\(\Leftrightarrow-2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;1;-3\right\}\)( thỏa )

Vậy....

12 tháng 9 2020

Đk: x \(\ge\)0; x \(\ne\)1; x \(\ne\)9

1) \(B=\left(\frac{2x+3}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)

\(B=\frac{2x+3-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\)

\(B=\frac{-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{-\left(x+2\sqrt{x}-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+2}{3-\sqrt{x}}\)

2. \(B=\frac{\sqrt{x}+2}{3-\sqrt{x}}=\frac{-\left(3-\sqrt{x}\right)+5}{3-\sqrt{x}}=-1+\frac{5}{3-\sqrt{x}}\)

Để B \(\in\)Z <=> 5 \(⋮\)\(3-\sqrt{x}\)

<=> \(3-\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do \(3-\sqrt{x}\le\)3 => 3 - \(\sqrt{x}\)\(\in\){1; -1; -5}

Lập bảng:

\(3-\sqrt{x}\) 1  -1 -5 
   x 4 16 64

Vậy ...
 

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

17 tháng 8 2017

http://lingcor.net/ref/52937

18 tháng 8 2021

a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)

 \(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)

\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa