\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2014}}\)Hãy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A\)=  \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)

\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)

\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)

Vậy  \(A< \frac{3}{2}\)

Chúc bạn học tốt !!! 

7 tháng 5 2016

\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)

\(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2013}}\)

\(3A-A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)

\(2A=3-\frac{1}{3^{2014}}\)

\(A=\left(3-\frac{1}{3^{2014}}\right):2\)

\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}<\frac{3}{2}\)

\(\Rightarrow A<\frac{3}{2}\)

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

2 tháng 5 2019

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

2 tháng 5 2019

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B

8 tháng 3 2018

A đâu !!

10 tháng 3 2018

anh cũng đang định hỏi câu này

22 tháng 5 2017

a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)

b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)

\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)

\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)

\(\Rightarrow B=1-\frac{1}{2^{2014}}\)