Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)
\(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2013}}\)
\(3A-A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\right)\)
\(2A=3-\frac{1}{3^{2014}}\)
\(A=\left(3-\frac{1}{3^{2014}}\right):2\)
\(A=\frac{3}{2}-\frac{1}{2.3^{2014}}<\frac{3}{2}\)
\(\Rightarrow A<\frac{3}{2}\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)
b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)
\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)
\(\Rightarrow B=1-\frac{1}{2^{2014}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A\)= \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)
\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)
Vậy \(A< \frac{3}{2}\)
Chúc bạn học tốt !!!