Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có : \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Thay \(x=\frac{16}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{16}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{4}{3}\right)^2}-1}=1+\frac{2}{\frac{4}{3}-1}=1+\frac{2}{\frac{1}{3}}=1+6=7\)
Vậy giá trị của \(A=7\) khi \(x=\frac{16}{9}\)
Thay \(x=\frac{25}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{25}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{5}{3}\right)^2}-1}=1+\frac{2}{\frac{5}{3}-1}=1+\frac{2}{\frac{2}{3}}=1+3=4\)
Vậy giá trị của \(A=4\) khi \(x=\frac{25}{9}\)
\(b)\) Để \(A=5\) thì \(1+\frac{2}{\sqrt{x}-1}=5\)
\(\Rightarrow\)\(\frac{2}{\sqrt{x}-1}=4\)
\(\Rightarrow\)\(\frac{1}{\sqrt{x}-1}=\frac{1}{2}\)
\(\Rightarrow\)\(\sqrt{x}-1=2\)
\(\Rightarrow\)\(\sqrt{x}=3\)
\(\Rightarrow\)\(x=3^2\)
\(\Rightarrow\)\(x=9\)
Vậy để \(A=5\) thì \(x=9\)
\(c)\) Để \(A\inℤ\) thì \(1+\frac{2}{\sqrt{x}-1}\inℤ\)
\(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)
\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(\sqrt{x}-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(4\) | \(0\) | \(9\) | \(1\) |
Vậy để \(A\inℤ\) thì \(x\in\left\{0;1;4;9\right\}\)
Chúc bạn học tốt ~
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
(x^2+4)^2=x^4+8x^2+16
MS=(x^2+4)^2-4x(x^2+4)=(x^2+4)(x^2-4x+4)=(x^2+4)(x-2)^2
ĐK x khác 2
A=(x+2)/(x-2)=1+4/(x-2)
(x-2)= Uocs (4)
hết
b: b=0
=>|a|=0^2021+1=1
=>a=1 hoặc a=-1
c: a=0
=>b^2021+1=0
=>b^2021=-1
=>b=-1