Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(A=4x^2+2-\left(2x^2-1\right)+\left(-4\right)^3=4x^2+2-2x^2+1-64\)
\(=2x^2-61\)Thay x = -2 vào biểu thức A ta được :
\(A=8-61=-53\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1 + 4 + 42 + ... + 499
4A = 4 + 42 + ... + 4100
4A - A = 4100 - 1
3A = 4100 - 1
=> 4100 - 1 + 1 = 4x
=> 4100 = 4x
=> x = 100
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow2^{x+1}.3^y=4^x.3^x\)
\(\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\frac{3^y}{3^x}=\frac{2^{2x}}{2^{x+1}}\)
\(\Leftrightarrow3^{y-x}=2^{x-1}\)
Nếu \(x>1\Rightarrow\) vế trái lẻ, vế phải chẵn pt vô nghiệm
\(\Rightarrow x=1\Rightarrow3^{y-1}=1\Rightarrow y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
15S+1=15+15.42+15.44+...+15.420+1
=16+15.42+15.44+...+15.420
=42+15.42+15.44+...+15.420
=16.42+15.44+...+15.420 =44+15.44+...+15.420=16.44+...+15.420=16.418+15.420=16.420=422
vậy x-5=22 <=>x=27
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{3}\right)^{2x-1}-\frac{1}{3^2}=-\frac{2}{27}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=-\frac{2}{27}+\frac{1}{9}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=\frac{1}{27}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=\left(\frac{1}{3}\right)^3\)
=> 2x - 1 = 3
=> 2x = 3 + 1
=> 2x = 4
=> x = 4/2 = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=21:7\)
\(\Rightarrow x=3\)
c, \(x^{10}=1^x\)
\(\Rightarrow x\in\left\{1;0\right\}\)
\(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32=2^4\)
\(\Rightarrow x=4\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Phần này mk ko bt làm đâu
\(x^{10}=1^x\)
\(\Rightarrow\)\(x^{10}=1\)
\(\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Tới đây mk chịu để mk suy nghĩ đã!
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1 dễ òi nên k giải nữa nha, chỉ cần ghép các số ( 1;2;3 ) số đầu, liên tiếp dần là đc nha bạn.
Bài 2:
\(8^4\cdot16^5=\left(2^3\right)^4\cdot\left(2^4\right)^5=2^{12}\cdot2^{20}=2^{32}\)
\(5^{40}\cdot125^7\cdot625^3=5^{40}\cdot\left(5^3\right)^7\cdot\left(5^4\right)^3=5^{40}\cdot5^{21}\cdot5^{12}=5^{73}\)
\(27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\)
\(10^3\cdot100^5\cdot1000^4=10^3\cdot\left(10^2\right)^5\cdot\left(10^3\right)^4=10^3\cdot10^{10}\cdot10^{12}=10^{25}\)
\(A=1+2^1+2^1+2^2+2^3+...+2^{2021}\)
\(2A=2+2^2+2^2+2^3+2^4+...+2^{2022}\)
\(2A-A=\left(2+2^2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2^1+2^1+2^2+2^3+...+2^{2021}\right)\)
\(A=2^{2022}-1\)
suy ra \(A+1=2^{2022}\)
Do đó \(x=2022\).