Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Rút gọn biểu thức :
\(P=x\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}+\dfrac{x^2+2}{x^3-1}\right)\)
\(=\dfrac{x^2-1-x^2-x-1+x^2+2}{x^3-1}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\) ( 1 )
b ) Tìm x để P = 7 .
Thay P = 7 vào biểu thức ( 1 ) ta có :
\(\dfrac{x}{x^2+x+1}=7\)
\(\Leftrightarrow x=7\left(x^2+x+1\right)\)
\(\Leftrightarrow\)\(7\left(x^2+1\right)=0\)
Vì \(x^2\ge0\) nên suy ra \(x^2+1\ge1\)
Vậy không có x thỏa mãn để P = 7 .
Ta có: P = x − x + 2 ( x + 1 ) ( x − 2 ) − x x ( x − 2 ) : 1 − x 2 − x = x − x + 2 − x ( x + 1 ) ( x + 1 ) ( x − 2 ) . 2 − x 1 − x = 2 − 2 x ( x + 1 ) ( x − 1 ) = 2 ( 1 − x ) ( x + 1 ) ( x − 1 ) = − 2 x + 1
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
a: \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}-1}-\dfrac{2\sqrt{3}}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-6-2\sqrt{3}}{\sqrt{x}-1}\)
b: \(=\dfrac{3-\sqrt{x}-1+\sqrt{x}+5\sqrt{x}}{\sqrt{x}-2}=\dfrac{5\sqrt{x}+2}{\sqrt{x}-2}\)
c: \(=\dfrac{2-6\sqrt{x}-1+\sqrt{x}-3+\sqrt{x}}{\sqrt{x}-4}\)
\(=\dfrac{-4\sqrt{x}-4}{x-4}\)
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K
a) Rút gọn:
b) Để B = 16 thì:
⇔ x + 1 = 16 ⇔ x = 15 (thỏa mãn x ≥ -1)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2003}{x}\)ĐK : \(x\ne0;\pm1\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{2003}{x}\)
\(=\frac{x^2-1}{\left(x-1\right)\left(x+1\right)}.\frac{2003}{x}=\frac{2003}{x}\)