Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Do: \(y=\sqrt{x+2}\)
<=> \(y^2=x+2\)
<=> \(x=y^2-2\)
Khi đó: \(A=y^2-2-2y\)
Vậy \(A=y^2-2y-2\)
b)
\(A=y^2-2y-2\left(cmt\right)\)
\(A=\left(y^2-2y+1\right)-3\)
\(A=\left(y-1\right)^2-3\)
Do \(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(y-1\right)^2-3\ge-3\)
=> \(A\ge-3\)
Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)
<=> \(y=1\)
Do: \(y=\sqrt{x+2}\)
<=> \(\sqrt{x+2}=1\)
<=> \(x+2=1\)
<=> \(x=-1\)
Lời giải:
a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)
\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)
b)
\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)
Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$
Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$
Lời giải:
a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)
\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)
b)
\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)
Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$
Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$
a.
\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)
\(\Rightarrow y^2=x+2\)
\(\Rightarrow x=y^2-2\)
thay vào A ta có:\(A=x-2\sqrt{x+2}\)
\(\Rightarrow A=y^2-2y=y^2-2y-2\)
b.
\(A=x-2\sqrt{x+2}\)
Điều kiện:x+2≥0⇔x>-2
ta có:\(A=x-2\sqrt{x+2}\)
\(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)
\(=\left(\sqrt{x+12}-1\right)^2-3\)
vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)
vậy GTNN của A là-3
a/ y=\(\sqrt{x+2}\)→\(y^2-2=x\)
⇒A=\(y^2-2-2y\)
b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3
⇒\(A_{min}=-3\)
dấu = xảy ra khi y=1⇒x= -1