\(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

9 tháng 7 2020

a) A = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

A = \(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

A = \(\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

A = \(-\frac{6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

A = \(-\frac{6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}\)

A = \(-\frac{6}{6\left(x-2\right)}\)

A = \(-\frac{1}{x-2}\)

b) |x| = \(\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) với x = 1/2, ta có: 

A = \(-\frac{1}{\frac{1}{2}-2}=\frac{2}{3}\)

+) với x = -1/2, ta có:

A = \(-\frac{1}{\left(-\frac{1}{2}\right)-2}=\frac{2}{5}\)

30 tháng 5 2017

ko biết

30 tháng 5 2017
  1. a/  [x/x^2-4 -2(x+2)/x^2-4 +x-2/x^2-4]:[x^2-4/x+2 +10-x^2/x+2] =(x-2x-4+x-2/x^2-4):(x^2-4+10-x^2/x+2) = - 6/x^2-4 nhân với x+2/x^2-4+10-x^2= - 6/(x+2)(x-2) nhân với x+2/6= - 1/x-2.

c/đễ A<0  <=>  -1/X-2 <0  <=> x-2<0  <=>x<2 

30 tháng 3 2021

a) ĐKXĐ : x ≠ ±2

\(=\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\div\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(=\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]\div\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\div\frac{6}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\times\frac{x+2}{6}=\frac{-1}{x-2}\)

b) Để A < 0 thì -1/x-2 < 0

=> x - 2 > 0 <=> x > 2

Vậy với x > 2 thì A < 0

26 tháng 4 2019

\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)

\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)

\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)

\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)

\(A=\frac{x-6}{x-2}\)

26 tháng 4 2019

b, ta có \(/\frac{1}{2}/=\frac{1}{2}=\frac{-1}{2}\)

TH1 : Thay x = 1/2 vào A 

.....

Th2 : Thay x = -1/2 vào A :

... 

Bn tự tính vào kết luận