Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)
\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x^2}{x-3}\)
b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)
=> Để A>0 thì \(x-3>0\)
\(\Rightarrow x>3\)
Vậy với \(x>3\)thì A>0
c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)
Mà theo điều kiện xác định, \(x\ne3\)
\(\Rightarrow x=11\)
Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)
Vậy \(A=\frac{121}{2}\)
Học tốt!!!!
ĐKXĐ:\(x\ne\pm2;x\ne0;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
\(=\left[\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2}{x-3}\)
b
Tại x=-2 thì biểu thức trên không xác định
Vậy A không xác định tại x=-2
c
\(A>0\Leftrightarrow\frac{4x^2}{x-3}>0\) mà \(4x^2>0\) ( nên nhớ là ĐKXĐ x khác 0 ) nên x-3 >0 hay x > 3
d
\(\left|x-7\right|=4\Leftrightarrow x-7=4\left(h\right)x-7=-4\)
\(\Leftrightarrow x=11\left(h\right)x=3\)
Loại trường hợp x=3 bạn thay x=11 vào tính tiếp nha !!!!!
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)
\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)
b) Thay x = -3 vào A, ta được :
\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)
\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)
\(\Leftrightarrow A=-6\)
c) Để A > -1
\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)
\(\Leftrightarrow2x^2-2x< x^2+2x+1\)
\(\Leftrightarrow x^2-4x-1< 0\)
\(\Leftrightarrow\left(x-2\right)^2-5< 0\)
\(\Leftrightarrow\left(x-2\right)^2< 5\)
Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)
a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
= \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)
<=> \(\frac{x^2+1}{x+1}+1>0\)
<=> \(\frac{x^2+x+2}{x+1}>0\)
Vì x2 + x + 2 >0 \(\forall x\)
=> A > 0 <=> x + 1 > 0 <=> x > -1
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
2 tập kiểu vậy (((:
:vvvvv