Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ĐK:n-3\ne0\Leftrightarrow n\ne3\)
b, Ta có : \(A=\dfrac{4}{n-3}\left(n\ne3\right)\)
n = 0 ( TMđk )
n = 10 ( TMđk )
n = -2 ( TMđk )
Thay n = 0 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}\)\(=\dfrac{4}{-3}=\dfrac{-4}{3}\)
Vậy giá trị của phân số A tại n=0 là \(\dfrac{-4}{3}\)
Thay n=10 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Vậy giá trị của phân số A tại n=10 là \(\dfrac{4}{7}\)
Thay n=-2 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-7}=\dfrac{-4}{7}\)
Vậy giá trị của phân số A tại n=-2 là \(\dfrac{-4}{7}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là p/s thì n ∉ {-1;1;2;3;4;5;7}
b)
+) n=0; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
\(A=\dfrac{4}{n-3}\)
a) Để A là phân số :
\(n-3\ne0\Leftrightarrow n\ne3\)
b)
Với : n = 0 \(\Rightarrow A=\dfrac{4}{0-3}=-\dfrac{4}{3}\)
Với : n = 10 \(\Rightarrow A=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với : n = -2 \(\Rightarrow A=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là phân số thì \(n\notin\left\{-1;1;2;3;4;5;7\right\}\)
b)
+) n=0, ta có:;
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
Chúc bạn học tốt!
a,
Để A là phân số thì n-3 khác 0 => n khác -3
b,
Với n=0 thì A = 4/-3
Với n=10 thì A = 4/7
Với n=-2 thì A = 4/-5
nha bn
a) Để A là p/số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
b) Để\(A\inℤ\)
\(\Rightarrow n-3⋮n+3\)
\(\Leftrightarrow n-3=n+3-6\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vì :\(n\inℕ\)
\(\Rightarrow n\in\left\{0;3\right\}\)
c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)
Để A tối giản
\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)
\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)
\(\Rightarrow n-3⋮̸\)\(-6\)
\(\Rightarrow n-3\ne6k\)
\(\Rightarrow n\ne6k+3\)
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
\(A=\frac{4}{2n-1}\)
a, ĐK : \(2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
b, Khi n = 0
\(A=\frac{4}{2.0-1}=\frac{4}{0-1}=\frac{4}{-1}=-4\)
Khi n = 3
\(A=\frac{4}{2.3-1}=\frac{4}{6-1}=\frac{4}{5}\)
Khi n = 5
\(A=\frac{4}{2.5-1}=\frac{4}{10-1}=\frac{4}{9}\)
c, Để \(A\in Z\)thì \(4⋮2n-1\)hay \(2n-1\inƯ\left(4\right)\)
Ta có bảng sau :
Ư(4) | 2n-1 | n |
1 | 1 | 1 ( TM) |
-1 | -1 | 0 ( TM ) |
2 | 2 | 3/2 ( Loại ) |
-2 | -2 | -1/2 ( Loại ) |
4 | 4 | 5/2 ( Loại ) |
-4 | -4 | -3/2 ( Loại ) |
Vậy để A nguyên thì \(n\in\left\{1;0\right\}\)
Để A là phân số thì n phải khác 3
Vì 3-3=0 thì mẫu =0 => phân số không có nghĩa
k cho mình nha
Điều kiện để A là phân số là n thuộc Z và N khác 0