K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)

15 tháng 3 2021

Cảm ơn anh. Nhưng anh rút gọn sai rồi với lại em đang cần câu b ạ.

30 tháng 10 2022

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x+1}{2x}\)

16 tháng 1 2018

( x22x / 2x2+8 2x2 / 84x+2x2x3 ).(11/x 2/x2 )

=[ x22x / 2(x2+4) 2x2 / 2(x2+4)x(x2+4) ]. x2x2 / x2

=[x22x / 2(x2+4) 2x2 / (2x)(x2+3)] . x2x2 / x2

=(x22x)(2x)4x2 / 2(2x)(x2+4) . x2+x2x2 / x2

= x(x2+4) / 2(2x)(x2+4). (x+1)(x2) / x2

=x+1 / 2x

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

a: \(M=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: Thay x=1/2 vào M, ta được:

\(M=\left(\dfrac{1}{2}+1\right):\left(2\cdot\dfrac{1}{2}\right)=\dfrac{3}{2}\)

14 tháng 12 2021

\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)

14 tháng 12 2021

Thank bạn <3

NV
27 tháng 2 2019

ĐKXĐ: \(x\ne\left\{\dfrac{-3}{2};\dfrac{1}{2};\dfrac{7}{4};\dfrac{5}{2};4;\right\}\)

\(P=\left(\dfrac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(2x-5\right)\left(x-4\right)}\right)\div\dfrac{\left(7-4x\right)\left(2x+3\right)}{\left(2x-1\right)\left(2x+3\right)}+1\)

\(P=\left(\dfrac{2x-3-3\left(2x-5\right)-2\left(2x-1\right)}{\left(2x-1\right)\left(2x-5\right)}\right)\dfrac{2x-1}{7-4x}+1\)

\(P=\dfrac{-8x+14}{\left(2x-5\right)\left(7-4x\right)}+1=\dfrac{2}{2x-5}+1\)

b/ \(\left|x\right|=\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Với \(x=\dfrac{1}{2}\Rightarrow P=\dfrac{2}{2.\dfrac{1}{2}-5}+1=\dfrac{1}{2}\)

Với \(x=\dfrac{-1}{2}\Rightarrow P=\dfrac{2}{2.\left(\dfrac{-1}{2}\right)-5}+1=\dfrac{2}{3}\)

c/ Để P nguyên \(\Rightarrow\dfrac{2}{2x-5}\) nguyên \(\Rightarrow2⋮\left(2x-5\right)\Rightarrow2x-5=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(2x-5=-2\Rightarrow x=\dfrac{3}{2}\left(l\right)\)

\(2x-5=-1\Rightarrow x=2\)

\(2x-5=1\Rightarrow x=3\)

\(2x-5=2\Rightarrow x=\dfrac{7}{2}\left(l\right)\)

Vậy \(x=\left\{2;3\right\}\) thì P nguyên

d/ \(P>0\Rightarrow\dfrac{2}{2x-5}+1>0\Rightarrow\dfrac{2x-3}{2x-5}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3>0\\2x-5>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3< 0\\2x-5< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< \dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\)

28 tháng 2 2019

Thanks ạ!

6 tháng 4 2018

1. ĐKXĐ: \(x\ne0;x\ne2\)

Ta có: \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(4+x^2\right)\left(2-x\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(4+x^2\right)\left(x-2\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\dfrac{x\left(x-2\right)^2+2.2x^2}{2\left(x^2+4\right)\left(x-2\right)}.\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{x^2}\)

\(A=\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\dfrac{\left(x+1\right)\left(x-2\right)}{x^2}\)

\(A=\dfrac{\left(x^3+4x\right)\left(x+1\right)\left(x-2\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(A=\dfrac{x\left(x^2+4\right)\left(x+1\right)\left(x-2\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(A=\dfrac{x+1}{2x}\)