\(\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}\)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Rút gọn:

\(A=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{4x}{10x-5}\)

\(A=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{4x}{5\left(2x-1\right)}\)

\(A=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)

\(A=\dfrac{10x}{2x+1}\)

a)

Để phân thức được xác định thì mẫu thức phải \(\ne0.\)

\(\Rightarrow2x-1\ne0\) , \(2x+1\ne0\)\(5\left(2x-1\right)\ne0\)

\(\Rightarrow x\ne\dfrac{1}{2}\)\(x\ne-\dfrac{1}{2}\)

Vậy \(x\ne\dfrac{1}{2}\)\(x\ne-\dfrac{1}{2}\) thì phân thức \(A\) được xác định.

b)

- Tại \(x=-3\) :

\(A=\dfrac{10x}{2x+1}=\dfrac{10.-3}{2.-3+1}=6\)

- Tại \(x=\dfrac{1}{2}\) : Không thỏa mãn điều kiện của biến nên không tồn tại giá trị của phân thức.

3 tháng 1 2019

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

3 tháng 1 2019

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

12 tháng 12 2017

điều kiện của x để gtrị của biểu thức đc xác định

=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)

\(2x+5\ne0;x\ne0\)

=>\(x\ne-5;x\ne0\)

vậy đkxđ là \(x\ne-5;x\ne0\)

rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)

b,để bt =1=>\(\dfrac{x-1}{2}=1\)

=>x-1=2

=>x=3 thỏa mãn đkxđ

c,d giống như trên

a: ĐKXĐ: x<>3; x<>-3; \(x\ne-5\pm\sqrt{34}\)

b: \(=\dfrac{x^2+5x+6+5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{2x\left(x-3\right)\left(x+3\right)}{x^2+10x-9}\)

=2x

c: Khi x=1/2 thì A=2*1/2=1

21 tháng 4 2017

x210x=x(x10)0x2−10x=x(x−10)≠0 khi x0;x100x≠0;x−10≠0

Hay x0;x10x≠0;x≠10

x2+10x=x(x+10)0x2+10x=x(x+10)≠0 khi x0;x+100x≠0;x+10≠0

Hay x0;x10x≠0;x≠−10

x2+44x2+4≥4

Vậy điều kiện của biến x để biểu thức đã cho được xác định là

x10,x0,x10x≠−10,x≠0,x≠10

Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :

(5x+2x210x+5x2x2+10x).x2100x2+4(5x+2x2−10x+5x−2x2+10x).x2−100x2+4

= [

23 tháng 11 2018

ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0

<=> x khác 0 và x khác +-10.

\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)

= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)

= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)

= \(\dfrac{10x^2+40}{x(x^2+4)}\)

= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)

= \(\dfrac{10}{x}\)

Thay x = 20040 vào biểu thức, ta có:

\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)

3 tháng 12 2018

thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)

Bài 2 :

a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)

\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)

\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{8}{5}\)

=> giá trị của B ko phụ thuộc vào biến x

3 tháng 12 2018

bài 1

=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)

=\(\left(2x+1+2x-1\right)^2\)

=\(\left(4x\right)^2\)

=\(16x^2\)

Tại x=100 thay vào biểu thức trên ta có:

16*100^2=1600000

4 tháng 5 2017

a) A=3x+22(x1)3(2x+1)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) \(\ne0\)

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) \(=0\)

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}\)

Vậy x \(\ne\dfrac{-5}{4}\) thì giá trị phân thức A
=3x+22(x1)3(2x+1)được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) \(\ne\) 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}=-2,3\)

Vậy x \(\ne0\) thì giá trị phân thức B
=0,5(x+3)21,2(x+0,7)4(0,6x+0,9)được xác định.

4 tháng 5 2017

Sửa lại:

a) \(A=\dfrac{3x+2}{2\left(x-1\right)-3\left(2x+1\right)}\)

Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) ≠0

=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.

Ta có phương trình:

2 (x - 1) - 3 (2x + 1) =0

hay 2x - 2 - 6x - 3 = -4x - 5 = 0

=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}=-1,25\)

Vậy x ≠ \(-1,25\) thì giá trị phân thức A được xác định.

b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)

Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) ≠ 0

=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.

Ta có phương trình:

1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0

hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0

=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}\)=−2,3

Vậy x ≠ -2,3 thì giá trị phân thức B được xác định.

3 tháng 1 2019

a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)

\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x-1\right)}{2x}\)

\(P=\frac{x-1}{2}\)

c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )

Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )

d) Để P > 0 thì \(\frac{x-1}{2}>0\)

Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)

Để P < 0 thì \(\frac{x-1}{2}< 0\)

Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán