K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)

\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)

\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)

\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)

\(\Rightarrow a-2\sqrt{a}+1-2=0\)

\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)

\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)

1 tháng 8 2019

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)

\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)

\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)

\(=\frac{1-a}{\sqrt{a}}\)

1 tháng 9 2016

a)A=\(\left(\frac{\sqrt{a}^2-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

=\(\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

=\(\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{-4\sqrt{a}}{a-1}\right)\)

=\(\frac{a-1}{\sqrt{a}}\cdot\left(-1\right)\)

=\(\frac{1-a}{\sqrt{a}}\)

1 tháng 9 2016

b) để A<0 thì (ĐKXĐ a#0 a#1

\(\frac{1-a}{\sqrt{a}}< 0\)

mà \(\sqrt{a}>0\)

=> 1-\(\sqrt{a}< 0\)

=> \(\sqrt{a}>1\)

=> a>1

23 tháng 7 2018

Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao

23 tháng 7 2018

M ngon m làm đi nói nhiều 

13 tháng 8 2020

a) P = \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

P = \(\left(\frac{\sqrt{a}.\sqrt{a}-1}{2\sqrt{a}}\right)^2\cdot\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

P = \(\frac{\left(a-1\right)^2}{4a}\cdot\frac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)

P = \(\frac{a-1}{4\sqrt{a}^2}\cdot\left(-4\sqrt{a}\right)\)

P = \(\frac{1-a}{\sqrt{a}}\)

b) với x > 0 và x khác 1

P < 0 => \(\frac{1-a}{\sqrt{a}}< 0\)

Do \(\sqrt{a}>0\) => 1 - a < 0 => a > 1

Vậy S = {a|a > 1}

13 tháng 8 2020

Có 1 kiểu hơi khác Conan 1 tí -.-

\(a)P=\left(\frac{\sqrt{a}.\sqrt{a}-1}{2\sqrt{a}}\right).\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\frac{a-2\sqrt{a}+1-a-2\sqrt{1}-1}{a-1}=\frac{\left(a-1\right)\left(-4\sqrt{a}\right)}{\left(2\sqrt{a}\right)^2}\)

\(=\frac{\left(1-a\right).4\sqrt{a}}{4a}=\frac{1-a}{\sqrt{a}}\)

Vậy \(P=\frac{1-a}{\sqrt{a}}\)với a > 0 và \(a\ne1\)

b) Do a > 0 và a khác 1 nên P < 0 khi và chỉ khi :

\(\frac{1-a}{\sqrt{a}}< 0\Leftrightarrow1-a< 0\Leftrightarrow a>1\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0

\(p=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}.\frac{a-2a+1-a-2a-1}{\left(a-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{-4\sqrt{a}}{\left(a-1\right)}\)

\(=\frac{1-a}{\sqrt{a}}\)

\(b,\)Để P < 0 thì \(\frac{1-a}{\sqrt{a}}< 0\)

\(\sqrt{a}>0\)

\(1-a< 0\Rightarrow a>1\)

Vậy x > 1 thì P < 0