Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
\(a,\dfrac{x^2+6x+9}{x+3}\\ đk:x\ne-3\\ =\dfrac{\left(x+3\right)^2}{x+3}=x+3\)
b, Thay \(x=-2\left(t/mđk\right)\) vào
\(-2+3=1\)
Vậy tại \(x=-2\) thì biểu thức = 1
\(A=\dfrac{x^2+6x+9}{x+3}\)
\(A=\dfrac{x^2+2.x.3+3^2}{x+3}\)
\(A=\dfrac{\left(x+3\right)^2}{x+3}\)
\(A=x+3\)
b) Thay x = -2 vào A ta được A = -2 + 3 = 1
Vậy khi x = -2 thì A = 1
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
a: ĐKXĐ: x<>0; x<>-3
b: \(=\dfrac{x^2+6x+9}{x\left(x+3\right)}\cdot\dfrac{2}{x+3}=\dfrac{2}{x}\)
c: Khi x=1/5 thì A=2:1/5=10
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
a: \(A=36x^2+12x+1-36x^2+1=12x+2\)