K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)

b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)

A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)

\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)

\(\Rightarrow n=-3;-5;13;-21\)

học tốt

24 tháng 2 2018

\(a)\) Để A là một phân số thì \(n-3\ne0\) \(\Leftrightarrow\) \(n\ne3\)

\(b)\)Thay \(n=-2\) vào A ta được : 

\(A=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)

Vậy ...

DD
17 tháng 1 2022

\(A=-\frac{4}{n-1}\inℤ\Leftrightarrow n-1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-3,-1,0,2,3,5\right\}\).

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên

\(\Rightarrow5⋮n-4\)

\(\Rightarrow n-4\)là ước của \(5\)

Mà các ước của \(5\) là : \(5;1;-1;-5\)

Ta có bảng sau :

   \(n-4\)\(5\)\(1\)\(-1\)\(-5\)
   \(n\)\(9\)\(5\) \(3\)\(\)\(-1\)
\(KL\)\(TM\)\(TM\)\(TM\)\(TM\)

Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.

b) Với \(n=5\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)

Với \(n=-1\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)