Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
Để a xác định thì :\(x^2-2x\)khác 0
Nên \(x\left(x-2\right)\)khác 0
\(\Rightarrow x\)khacs0 và x khác 2
\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)
Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z
Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)
Để A thuộc Z thì \(x\varepsilon\)Ư(2)
Mà Ư(2) là 2 và -2
Vậy x=2 và x=-2 thì A thuộc Z
Chúc bạn học tốt nhé!
B1:Ta có ;n(n+5)- (n-3) (n+2)= n2 + 5n- n2- 2n+3n+6= 6n+6= 6.(n+1)
=> 6.(n+1) chia hết cho 6 với mọi n thuộc N
Vậy;...........................
1/
a/ \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)
thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)
b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
thay vào: \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)
c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
a) \(A=\frac{2x}{x^2-9}+\frac{5}{3-x}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x}{\left(x-3\right)\left(x+3\right)}-\frac{5}{x-3}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x-5\left(x+3\right)-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x-5x-15-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4x-12}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4}{x-3}\)
b) x = \(\frac{-3}{2}\) ( thỏa mãn )
Vậy với x= \(\frac{-3}{2}\) thì giá trị của biểu thức A bằng \(\frac{-4}{\frac{-3}{2}-3}=\frac{-4}{\frac{-9}{2}}=\left(-4\right)\left(\frac{-2}{9}\right)=\frac{8}{9}\)
c) A là số nguyên
\(\Leftrightarrow\frac{-4}{x-3}\)nguyên
\(\Leftrightarrow x-3=Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau :
x-3 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy.................
b, A=[(a+1)(a+7)][(a+3)(a+5)]+15
=>A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a+11= t
=>a2+8a+7= t-4 và a2+8a+15= t+4
=>A=(t-4)(t+4)+15
=>A=t2-16+15
=t2-1=(t-1)(t+1)
Thay t = a2+8a+11
=>A=(a2+8a+11-1)(a2+8a+11+1)
=>A=(a2+8a+10)(a2+8a+12)
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y-2\right)\left(x+y+5\right)\)