K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3

c)C=x(2x+1)-x^2(x+2)+x^3-x+3

=2x^2+x-x^3-2x^2+x^3-x+3

=3(không PT vào biến x)

 

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

a)

$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$

$=2(2x+1)$

b)

$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$

c)

$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$

$=-9x+4$

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

d)

$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$

$=6x^2+12x+9$

e)

$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$

$=x^3-x^2-3x+11$

f)

$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$

$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$

12 tháng 3 2020

Bài 2:

(1 + x)3 + (1 - x)- 6x(x + 1) = 6

<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6

<=> -6x + 2 = 6

<=> -6x = 6 - 2

<=> -6x = 4

<=> x = -4/6 = -2/3

Bài 3: 

a) (7x - 2x)(2x - 1)(x + 3) = 0

<=> 10x3 + 25x2 - 15x = 0

<=> 5x(2x - 1)(x + 3) = 0

<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = 1/2 hoặc x = -3

b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0

<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0

<=> -x2 + 9 = 0

<=> -x2 = -9

<=> x2 = 9

<=> x = +-3

c) (x + 4)(5x + 9) - x2 + 16 = 0

<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0

<=> 4x2 + 29x + 52 = 0

<=> 4x2 + 13x + 16x + 52 = 0

<=> 4x(x + 4) + 13(x + 4) = 0

<=> (4x + 13)(x + 4) = 0

<=> 4x + 13 = 0 hoặc x + 4 = 0

<=> x = -13/4 hoặc x = -4

12 tháng 3 2020

Lê Nhật Hằng cảm ơn bạn nha

19 tháng 2 2020

\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\\ =8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\\ =8x^3-8x^3-12x^2+12x^2+18x-18x+27+2\\ =29\)

Vậy biểu thức \(B\) không phụ thuộc vào biến \(x\left(dpcm\right)\)

19 tháng 2 2020

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\\= 6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\\ =6x^2-6x^2+33x-10x-14x-9x-55-21\\ =-76\)

Vậy biểu thức \(A\) không phụ thuộc vào biến \(x\left(dpcm\right)\)

31 tháng 12 2020

(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)

\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) 

\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) 

\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)

6 tháng 9 2017

A=(2x-1)(4x^2+2x+1)-4x(2x^2-3)

= 8x^3-1-8x^3+12x

= 12x-1

Tại x=1/2 suy ra A=12.1/2-1

=6-1=5

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)