Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
d) Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
(a) Với \(x\ge0,x\ne4\), ta có:
\(A=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Để \(A\le5\Rightarrow2\sqrt{x}+1\le5\)
\(\Leftrightarrow2\sqrt{x}\le4\Leftrightarrow\sqrt{x}\le2\Leftrightarrow0\le x\le4\).
Kết hợp với điều kiện thì: \(0\le x< 4.\)
(b) \(\dfrac{A}{2}=\dfrac{2\sqrt{x}+1}{2}\) nguyên khi \(\left(2\sqrt{x}+1\right)\in B\left(2\right)=\left\{0;2;4;...;2n\right\}\left(n\in N\right)\)
\(\Leftrightarrow\sqrt{x}\in\left\{-\dfrac{1}{2};\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\left(n\in N\right)\)
Hay: \(\sqrt{x}\in\left\{\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{4};\dfrac{9}{4};...;\dfrac{\left(2n+1\right)^2}{4}\right\}\)
a: \(C=\dfrac{3x+3\sqrt{x}-3-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{2x+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để \(C=\sqrt{x}\) thì \(x-\sqrt{x}=\sqrt{x}+1\)
=>\(x-2\sqrt{x}-1=0\)
=>\(\Leftrightarrow x=3+2\sqrt{2}\)
c: |2x-5|=3
=>2x-5=3 hoặc 2x-5=-3
=>2x=2 hoặc 2x=8
=>x=4(nhận) hoặc x=1(loại)
Khi x=4 thì \(C=\dfrac{2+1}{2-1}=3\)
a) Thay x = 81 vào A ta có:
\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)
b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)
\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
c) \(\dfrac{A}{B}< 4\) khi
\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\sqrt{x}-5< 0\)
\(\Leftrightarrow x< 25\)
Kết hợp với đk:
\(0\le x< 5\)