K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>2x-3y=0 và 2y+3z=0 và x+y+x/z=0

=>x/3=y/2 và y/-3=z/2 và x+y+x/z=0

=>x/9=y/6=z/-4 và x+y+x/z=0

x/9=y/6=z/-4=k

=>x=9k; y=6k; z=-4k

x+y+x/z=0

=>9k+6k+9k/-4k=0

=>15k=9/4

=>k=9/60=3/20

=>x=27/20; y=9/10; z=-3/5

5 tháng 5 2022

\(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\2y+3z=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3z=-2y\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\z=\dfrac{-2y}{3}\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow x=y=z=0\)

 

 

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)

Thay (1) vào A , ta được

\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)

\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)

\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)

\(\Rightarrow A=\dfrac{16k}{-5k}\)

\(\Rightarrow A=\dfrac{16}{5}\)

Vậy \(A=\dfrac{16}{5}\)

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

NV
5 tháng 1 2021

\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)

7 tháng 3 2022

2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0

=> 2x=3y;  5y=2z ;  3z=5x => x/3=y/2; y/2=z/5

=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31

      x/3 = 3y/6=2z/10 = (x-3y+2z)/7

=>  (12x+5y-3z)/ (x-3y+2z)=31/7

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)