Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(A=\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)\left(ĐKXĐ:x\ne-2;x\ne-3;x\ne1\right)\)
\(=\left(\frac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{\left(3-x\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+2\right)\left(x+3\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2-\left(9-x^2\right)+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{4-x^2-9+x^2+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{\left(-x-3\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(-1\right)}=\frac{-\left(x+3\right)\left(x+1\right)}{-\left(x+2\right)\left(x+3\right)}=\frac{x+1}{x+2}\)
b, A > 0
\(\frac{x+1}{x+2}>0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x< -2\end{cases}}\)
Vậy để A > 0 thì x > - 1 với x khác 1
hoặc x < - 2 với x khác - 3
ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne-2\\x\ne1\end{cases}}\);
Ta có \(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}\)
\(=\frac{-x-3}{\left(x+3\right)\left(x+2\right)}=-\frac{1}{x+2}\)
Khi đó \(\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)=-\frac{1}{x+2}:-\frac{1}{x-1}=\frac{x-1}{x+2}\)
Khi A = 0 => x - 1 = 0 => x = 1 (loại)
Khi A > 0 => \(\frac{x-1}{x+2}>0\)
TH1 : \(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow x>1\)
TH2 \(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Rightarrow x< -2\)
Vậy với x > 1 hoặc x < - 2 ; x \(\ne\)-3 thì A > 0
a) ĐK: \(x\ne-3;x\ne-2;x\ne1\)
\(A=\left(\frac{2-x}{x+3}+\frac{x-3}{x+2}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2+x^2-9+2-x}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)=\frac{-1}{x+2}.\left(1-x\right)=\frac{x-1}{x+2}\)
b) A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}=0\)
Do x khác -2 nên x - 1 = 0 hay x = 1 (loại vì ko thỏa ĐK)
A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}>0\)Xét 2 TH:
- TH1: x - 1 > 0 và x + 2 > 0 suy ra x > 1 và x > -2 nên ta chọn x > 1.
- TH1: x - 1 < 0 và x + 2 < 0 suy ra x < 1 và x < -2 nên ta chọn x < -2. Và x khác -3
Vậy để A > 0 thì x > 1 hoặc x < -2 \(\left(x\ne-3\right)\)
bài này dễ mà mk gợi ý rồi cậu tự làm ha . tách mẫu x^2 + 5x + 6 sau đó đặt nhân tử chung rồi tính con ve sau thì quy đồng lên rồi tính . mk goi y thế chắc cậu ko hiểu lắm đúng ko nhưg hiện h mk bạn làm chưa có ai thèm giải hộ mk có cậu làm đc phần đó thì giải hộ mk đi . Làm ơn !
Trả lời:
a, \(ĐK:x\ne\frac{1}{3}\)
\(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)
\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)
b, \(5x^2+3x=0\)
\(\Leftrightarrow x\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)
Thay x = 0 vào A, ta có :
\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)
Thay x = - 3/5 vào A, ta có :
\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)
c, \(A=\frac{x}{x-1}\)
\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)
\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
\(\Rightarrow x-1=3x^2-x\)
\(\Leftrightarrow3x^2-x-x+1=0\)
\(\Leftrightarrow3x^2-2x+1=0\)
\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)
Vậy không tìm được x thỏa mãn đề bài.
d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)
Vậy x thuộc Z thì 6/A thuộc Z
\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)
b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên
\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)
c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)
d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên
ĐKXĐ: \(x\ne-3,x\ne-2,x\ne1\)
\(A=\dfrac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\dfrac{x-1-x}{x-1}\)
\(=\dfrac{-\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}.\left(1-x\right)=\dfrac{x-1}{x+2}\)
\(A=0\Leftrightarrow\dfrac{x-1}{x+2}=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow S=\varnothing\)
b)
\(P=A-B=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9-x^2+9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(2-x\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x}{x-3}\)
c)
Để \(P\le1\) thì:
\(-\dfrac{x}{x-3}\le1\)
\(\Leftrightarrow\dfrac{x}{x-3}\ge1\\ \Leftrightarrow x-3-x\ge1\\ \Leftrightarrow-3\ge1\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\le1\)
`HaNa♬D`
Làm lại nha cái này đúng, kia sai nha=)
b)
Với \(\left\{{}\begin{matrix}x\ne3\\x\ne2\end{matrix}\right.\)
\(P=A-B=(\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)})+\dfrac{2x-1}{x-3}\\ =\left(\dfrac{2x-9-x^2-9}{\left(x-3\right)\left(x-2\right)}\right)+\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}+\dfrac{2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2+2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x-1}{x-3}\)
c)
Để P\(\ge1\) thì:
\(\dfrac{x-1}{x-3}\ge1\\ \Leftrightarrow x-3-x+1-1\ge0\\ \Leftrightarrow-3\ge0\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\ge1\)
`HaNa☘D`