K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

b) Tìm x nguyên để A nguyên

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇔ x  + 3 ∈ Ư(11) ⇔ x + 3 ∈ {-11; -1; 1; 11}

Do  x  + 3 ≥ 3 nên  x  + 3 = 11 ⇔  x  = 8 ⇔ x = 64

Vậy với x = 64 thì A nguyên

Đề có vấn đề theo tôi đề như sau :

\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)

Rheo tôi đề như vậy

mong xem lại đề

4 tháng 1 2020

a) \(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{23\sqrt{x}+3x-20}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

17 tháng 7 2021

undefined

a) Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

4 tháng 8 2023

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) Thay x=0 vào A, ta được:

\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)

\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)

\(=\dfrac{11}{3}-2-1\)

\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)

22 tháng 3 2021

Thank

26 tháng 12 2021

\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) Để P nguyên

\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)

\(\Leftrightarrow3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)

Mà \(\sqrt{x}\ge0,\forall x\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy để P nguyên \(\Leftrightarrow x=1\)