K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

\(A=1+3+3^2+3^3+...+3^{3n}+3^{3n+1}+3^{3n+2}\)

\(A=1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)+...+3^{3n}.\left(1+3+9\right)\)

\(A=1.13+3^3.13+3^6.13+....+3^n.13\)

\(A=13.\left(1+3^3+3^6+...+3^{3n}\right)\)\(13\)

Vậy \(A\)\(13\)\(n\)

27 tháng 3 2021

\(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+8^n.4+8^n.2\)\(=11.25^n+6.8^n\)

Vì 25 = 8 (dư 17)

➩ \(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+6.8^n\)\(=11.8^n+6.8^n=17.8^n=0\) (dư 17)

Hay \(11.5^{2n}+3^{3n+2}+2^{3n+1}\) ⋮ 17

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Đề bị lỗi hiển thị rồi. Bạn nên gõ đề bằng công thức toán để mọi người hiểu đề của bạn hơn nhé.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

23 tháng 10 2019

+) Nếu n là số nguyên chẵn 

=> n + 2020\(⋮2\)

=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)

+) Nếu n là số nguyên lẻ

=> n + 2019 \(⋮2\)

=>  \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)

Vậy với mọi số nguyên n thì biểu thức P luôn chia hết cho 2.

23 tháng 2 2019

a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)

\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)

\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)

23 tháng 2 2019

b) ta có: M=3x.(x-y) chia hết cho 11

N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11

=> M-N chia hết cho 11 (đpcm)