Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x và y là hai đại lượng tỷ lệ thuận nên:
\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\) (1)
từ (1) => x=\(\frac{1}{7}y^{ }\)
vậy nếu x=3 thì y = 7.3=21
a) x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2
b) x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
x1 = (-4).(-2/7)=8/7
y1 = 3.(-2/7)=-6/7
k nha mk trả lời đầu đó!!!
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\left(-\dfrac{3}{4}\right):\dfrac{1}{7}\cdot2=\dfrac{-3}{4}\cdot7\cdot2=-\dfrac{3}{4}\cdot14=-\dfrac{42}{4}=-\dfrac{21}{2}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=\dfrac{2}{7}\)
Do đó: \(x_1=-\dfrac{8}{7};y_1=\dfrac{6}{7}\)
c: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=-\dfrac{5}{3}\)
Do đó: \(x_1=10;y_1=-5\)