Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\\ M=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-\frac{z}{z}-\frac{y}{y}-\frac{x}{x}\\ M=\left(x+y+z\right).\left(\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)-1-1-1\\ M=2020.\frac{1}{202}-3\\ M=10-3\\ M=7\)
Trần Quốc Tuấn hi bạn đăng câu hỏi 1 lần thôi nhé .....mik vừa trl cho bạn ở câu trc r
Bn ko nên đăng 1 câu hỏi nhiều lần nếu còn vậy thì t sẽ xóa câu hỏi của bn
\(M=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\\ M=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-\frac{z}{z}-\frac{y}{y}-\frac{x}{x}\\ M=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-1-1-1\\ M=2020\cdot\frac{1}{202}-3\\ M=10-3=7\)
M = x+y/z + x+z/y + y+z/x
M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x
M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1
M = 2020.1/202 - 3
M = 10 - 3 = 7
ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
a,Sử dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)
\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)
Lời giải:
Từ điều kiện đề bài suy ra $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$
$\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0$
$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0$
$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Rightarrow (x+y)(y+z)(x+z)=0$
Do đó: $M=\frac{x+y}{z}.\frac{x+z}{y}.\frac{y+z}{x}=\frac{(x+y)(y+z)(x+z)}{xyz}=\frac{0}{xyz}=0$