Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của là sẽ tìm được nghiệm nguyên của
M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020
=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2
=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0
⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020
⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0
\(x+y+z=0\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz = 0)
\(\Rightarrow\)\(x=y=z=0\)
Vậy \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)
\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)
\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)
\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)
\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)
\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)
\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)
\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)
\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)
\(M = 0 \)
\(P=\frac{2020}{x^2+y^2}+\frac{2019}{xy}\)
\(P=\frac{2020}{\left(x+y\right)^2-2xy}+\frac{2019}{xy}\)
\(P=\frac{-2020}{2xy-4}+\frac{2019}{xy}\)
\(P=\frac{-1010}{xy-2}+\frac{2019}{xy}\)
Áp dụng bđt AM-GM : \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{4}{4}=1\)
\(P\ge\frac{-1010}{1-2}+\frac{2019}{1}=3029\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Bonking cách em nè:)Gọn hơn xíu:v
\(P=\frac{2020}{x^2+y^2}+\frac{1010}{xy}+\frac{1009}{xy}\)\(=2020\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1009}{xy}\)
\(\ge\frac{2020.4}{\left(x+y\right)^2}+\frac{1009}{\frac{\left(x+y\right)^2}{4}}=2020+1009=3029\)
Đẳng thức xảy khi x = y = 1
Vậy..
ta có :
\(xy+1=x+y\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}\)
với x=1 ta có :\(F=y^{2020}-1-y^{2020}=-1\)
với y=1 ta có : \(F=x^{2020}-1-x^{2020}=-1\)
trong cả hai trường hợp F=-1 vậy giá trị của F là -1