Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2=a^2-2\)
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)
....................................
a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)
Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^5+1}-\frac{16}{x^{16}+1}\)
\(=\frac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2}{x^2-1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2\left(x^2+1\right)-2.\left(x^2-1\right)}{x^2-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2x^2+2-2x^2+2}{\left(x^2+1\right)\left(x^2-1\right)}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{4}{x^4-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{4\left(x^4+1\right)-4\left(x^4-1\right)}{\left(x^4-1\right)\left(x^4+1\right)}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{8}{x^8-1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{8.\left(x^8+1\right)-8\left(x^8-1\right)}{\left(x^8-1\right)\left(x^8+1\right)}-\frac{16}{x^{16}+1}\)
\(=\frac{16}{x^{16}-1}-\frac{16}{x^{16}+1}\)
\(=\frac{16.\left(x^{16}+1\right)-16.\left(x^{16}-1\right)}{\left(x^{16}-1\right)\left(x^{16}+1\right)}\)
\(=\frac{32}{x^{32}-1}\)
Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
\(a,\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x^2-6x}\)
\(=\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x\left(x-6\right)}\)
\(=\frac{7\left(x-6\right)\left(x+6\right)-x\left(x-6\right)+36\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)}\)
\(=\frac{7\left(x^2-6\right)-x^2+6x+36x+216}{x\left(x^2-6\right)}\)
\(=\frac{7x^2-42-x^2+6x+36x+216}{x\left(x^2-6\right)}\)
\(=\frac{6x^2+42x+216}{x\left(x^2-6\right)}\)
\(=\frac{6\left(x^2+7x+36\right)}{x\left(x^2-6\right)}\)
Đề sai nhé, phải là như này nè :
\(b,\frac{1}{x^2-x+1}-\frac{1}{x^2+x+1}-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)
\(=\frac{x^2+x+1-\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)\(-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)
\(=\frac{x^2+x+1-x^2+x-1}{x^4+x^2+1}\)\(-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)
\(=\frac{2x}{x^4+x^2+1}-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)
\(=\frac{2x\left(x^4-x^2+1\right)-2x\left(x^4+x^2+1\right)}{\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)}+\frac{4x^3}{x^8-x^4+1}\)
\(=\frac{2x^5-2x^3+2x-2x^5-2x^3-2x}{x^8-x^4+1}+\frac{4x^3}{x^8-x^4+1}\)
\(=-\frac{4x^3}{x^8-x^4+1}+\frac{4x^3}{x^8-x^4+1}=0\)