Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 3k và 4k với k>0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 5k, do đó 5k = 20
=> k = 4.
Từ đó độ dài các cạnh góc vuông lần lượt là 12 cm và 16 cm.
Giả sử tam giác đã cho là tam giác ABC có BC là 45 cm
Vì độ dài 2 cạnh góc vuông tỉ lệ với 3 và 4 nên ta đặt AB là 3x
Ac là 4x
Áp dụng định lý Py-ta-go
BC 2=Ab 2+Ac 2
452=(3x)2+(4x)2
2025=9x2+16x2
2025=25x2
X 2=81
X=9
Ab=9.3=27(cm)
Ac=9.4(cm)
Gọi độ dài các cạnh góc vuông lần lượt là a, b ( a,b > 0 )
Theo định lí Pytago ta có: \(a^2+b^2=45^2=2025\)
Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\)\(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{2025}{25}=81\)
\(\Rightarrow a^2=81.9=729\)\(\Rightarrow a=\pm27\)
\(b^2=81.16=1296\)\(\Rightarrow b=\pm36\)
mà \(a,b>0\)\(\Rightarrow a=27\); \(b=36\)
Vậy độ dài các cạnh góc vuông lần lượt là 27cm và 36cm
gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)
VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)
VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45
ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ
\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........