\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2017.\)Tính 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)

\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)

\(=\frac{1+x+xy}{1+x+xy}=1\)

Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)

13 tháng 9 2017

đề b2 sai

31 tháng 7 2016

ầy bạn xem lại khúc sao chữ và nhé

31 tháng 7 2016

mik biết là thiếu đề nhưng mik thấy thày mik ghi thế giờ mới biết

2 tháng 1 2019

a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

         \(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

           \(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

2 tháng 1 2019

b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)

    Tương tự:   \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)

                \(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)

Suy ra: \(A+\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)

  \(=2.\left(x+y+z\right)\)

Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)

Mình có sai chỗ nào không nhỉ?

26 tháng 12 2019

Xét hiệu :

\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)

\(=\frac{x^2-y^2}{x+y}+\frac{y^2-z^2}{y+z}+\frac{z^2-x^2}{z+x}\)

\(=\frac{\left(x+y\right)\left(x-y\right)}{x+y}+\frac{\left(y+z\right)\left(y-z\right)}{y+z}+\frac{\left(z+x\right)\left(z-x\right)}{z+x}\)

\(=x-y+y-z+z-x=0\)

Vậy \(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)=\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)

hay \(\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=2009\)