K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Xét hiệu của hai phân thức sau:

\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}-\frac{y^2}{x+y}-\frac{z^2}{y+z}-\frac{x^2}{z+x}\)

\(=\left(\frac{x^2}{x+y}-\frac{y^2}{x+y}\right)+\left(\frac{y^2}{y+z}-\frac{z^2}{y+z}\right)+\left(\frac{z^2}{z+x}-\frac{x^2}{z+x}\right)=x-y+y-z+z-x=0\)

Vì hiệu của chúng bằng  \(0\)  nên số bị trừ sẽ bằng số trừ, tức là:

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\)

Mà  \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2015\)  (theo giả thiết)

Vậy,  \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}=2015\)

28 tháng 3 2016

Vì hiệu của chúng bằng 0 nên số bị trừ sẽ bằng số trừ ,tức là:

x^2/x+y+y^2/y+z+z^2/z+x=y^2/x+y+z^2/y+z+x^2/z+x

Mà x^2/x+y+y^2/y+z+z^2/z+x=2015(giả thiết)

Vậy y^2/x+y+z^2/y+z+x^2/z+x=2015