\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) với a,b,c khác 0

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

áp dụng tính chất hai dãy tỉ số bằng nhau nha bạn

4 tháng 6 2019

#)Tuy k giải được nhưng có bài cho tham khảo nek :

   Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath 

   Link : https://olm.vn/hoi-dap/detail/7941323649.html 

   Mk sẽ gửi về chat cho

4 tháng 6 2019

Giải:

Đặt : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)  => \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó, ta có:

\(\frac{b.ck-c.bk}{a}=\frac{0}{a}=0\) (1)

\(\frac{c.ak-a.ck}{b}=\frac{0}{b}=0\) (2)

\(\frac{a.bk-b.ak}{c}=\frac{0}{c}=0\) (3)

Từ (1); (2); (3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

1 tháng 6 2017

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{x\left(bz-cy\right)}{ax}=\frac{y\left(cx-az\right)}{by}=\frac{z\left(ay-bx\right)}{cz}\)

\(\Leftrightarrow\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{c}=\frac{b}{y}\end{cases}}\)

=> Điều cần chứng minh 

2 tháng 6 2017

cảm ơn bạn nhiều nha!!

mk k viết đề nha bạn!

\(=>\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c.\left(by-ax\right)}{c^2}\)

\(=>\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\)\(=\frac{abz-acy+bcx-acz+cay-bcx}{a^2+b^2+c^2}=0\)

\(=>\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bc}{c}=0\)

=> bz - cy = cx - az = ay - bx = 0

+) bz - cy = 0 => bz = cy => y / b = z/c 

+) cx - az = 0 => cx = az => x / a = z/ c
=> x / a = y / b = z/ c ( dpcm )

3 tháng 1 2017

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{bck-cbk}{a}=\frac{cak-ack}{b}=\frac{abk-bak}{c}\)

\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}\)

\(\Rightarrow0=0=0\)(đpcm)

26 tháng 6 2017

 \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\hept{\begin{cases}bx=ay\\cx=az\\cy=bz\end{cases}\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}\Rightarrow}}\)\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=0\left(đpcm\right)\)

\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)

18 tháng 3 2017

bạn xem bài giải ở dưới nè(bài của ngô minh hoàng)

18 tháng 3 2017

\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(\text{Theo tính chất của dãy tỉ số bằng nhau ,ta có:}\)

\(\frac{abx-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(\Rightarrow\frac{abx-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz-cy=0\)\(\text{và}\)\(cx-az=0\)

\(bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)

\(cx-az=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)

\(\text{Vậy}\)\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

31 tháng 7 2016

Biết: \(\frac{BZ-CY}{A}\) = \(\frac{CX-AZ}{B}\) = \(\frac{AY-BX}{C}\) (A,B,C KHÁC 0) . CHỨNG MINH RẰNG\(\frac{X}{A}\) = \(\frac{Y}{B}\) = \(\frac{Z}{C}\)