Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x/a+y/b = xy/ay+ ba/ay=xy+ab/ay=1
=>xy+ab=ay
=>xy=a(y-b)
=>y-b=xy/a (1)
Ta lại có :y/b+c/z=yz/bz +bc/bz=yz+bc/bz=1
=>yz+bc=bz
=>yz-bz=-bc
=>z(y-b)=-bc
=>y-b=-bc/z (2)
Từ (1),(2)=> xy/a=-bc/z( =y-b) => xyz= -abc
=>xyz+abc=0
1 Áp dụng tính chất của dãy tỉ số = nhau ta có
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=>\(\frac{x+y}{z}=2=>x+y=2z\)
2)
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
Ta có: \(\frac{a}{x}+\frac{y}{b}=1\)
\(\rightarrow\frac{a}{x}\cdot\frac{b}{y}+\frac{y}{b}\cdot\frac{b}{y}=1\cdot\frac{b}{y}\)
\(\rightarrow\frac{ab}{xy}+1=\frac{b}{y}\left(1\right)\)
Ta có: \(\frac{b}{y}+\frac{z}{c}=1\)
\(\rightarrow\frac{b}{y}=1-\frac{z}{c}\left(2\right)\)
Từ (1) và (2) \(\rightarrow\frac{ab}{xy}+1=1-\frac{z}{c}\)
\(\rightarrow\frac{ab}{xy}=\frac{-z}{c}\) \(\rightarrow abc=-xyz\)
\(\rightarrow abc+xyz=0\)