K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

Vì (d)//(d1) nên a=3 

Vậy: (d): y=3x+b

Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:

\(b+2=0\)

hay b=-2

8 tháng 9 2021

cần b2 thôi

 

22 tháng 1 2018

a) Vẽ đồ thị:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.

    + Hoành độ của A: 4 = 2.xA => xA = 2 (*)

    + Hoành độ của B: 4 = xB => xB = 4

=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)

- Tìm độ dài các cạnh của ΔOAB

Để học tốt Toán 9 | Giải bài tập Toán 9

((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)

a: 

loading...

b: Phương trình hoành độ giao điểm là:

\(2x+1=x-3\)

=>\(2x-x=-3-1\)

=>x=-4

Thay x=-4 vào y=x-3, ta được:

\(y=-4-3=-7\)

Vậy: Tọa độ giao điểm của (D1) và (D2) là B(-4;-7)

c: Đặt phương trình đường thẳng (d3): y=ax+b

Vì (d3)//(d1) nên \(\left\{{}\begin{matrix}a=2\\b< >1\end{matrix}\right.\)

Vậy: y=2x+b

Thay x=1 và y=0 vào y=2x+b, ta được:

\(b+2\cdot1=0\)

=>b+2=0

=>b=-2

Vậy: (d): y=2x-2

18 tháng 11 2021

b. Đồ thị đt đề cho là y=6

PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)

30 tháng 11 2021

b. PTHĐGĐ của hai hàm số:

\(x+2=-2x+1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)

Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)

30 tháng 11 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

15 tháng 10 2023

Bạn tự vẽ nhé.

\(a,\) 2 đồ thị hàm số \(y=2x,y=-3x+5\) giao nhau khi và chỉ khi :

\(2x=-3x+5\\ \Leftrightarrow5x=5\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=2x\Leftrightarrow y=2\)

Vậy giao điểm của 2 đồ thị là \(\left(1;2\right)\)

\(b,\) 2 đồ thị hàm số \(y=3x+2,y=-\dfrac{1}{2}x+1\) giao nhau khi và chỉ khi :

\(3x+2=-\dfrac{1}{2}x+1\\ \Leftrightarrow\dfrac{7}{2}x=-1\\ \Leftrightarrow x=-\dfrac{2}{7}\)

Thay \(x=-\dfrac{2}{7}\) vào \(y=3x+2\Rightarrow y=\dfrac{8}{7}\)

Vậy giao điểm của 2 đồ thị là \(\left(-\dfrac{2}{7};\dfrac{8}{7}\right)\)

\(c,\) 2 đồ thị hàm số \(y=\dfrac{3}{2}x-2,y=-\dfrac{1}{2}x+2\) giao nhau khi và chỉ khi :

\(\dfrac{3}{2}x-2=-\dfrac{1}{2}x+2\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

Thay \(x=2\) vào \(y=\dfrac{3}{2}x-2\Rightarrow y=1\)

Vậy giao điểm của 2 đồ thị là \(\left(2;1\right)\)

\(d,\) 2 đồ thị hàm số \(y=-2x+5,y=x+2\) giao nhau khi và chỉ khi :

\(-2x+5=x+2\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=x+2\Rightarrow y=3\)

Vậy giao điểm của 2 đồ thị là \(\left(1;3\right)\)