Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt k = . Ta có x = 2k, y = 5k
Từ xy=10. suy ra 2k.5k = 10 => 10 = 10 => = 1 => k = ± 1
Với k = 1 ta được = 1 suy ra x = 2, y = 5
Với k = -1 ta được = -1 suy ra x = -2, y = -5
Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)
Theo đề bài,ta còn có:
\(xy=10\)
hay 2k.5k=10
10k2 =10
\(\Rightarrow k=\pm1\)
Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)
Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)
xy = 96 => x = 96/y => 2/x = y/48
=> y/48 = 3/y => y = 12 hoặc -12
=> x = 8 hoặc -8
\(\dfrac{2}{x}=\dfrac{3}{y}\) và x.y =96
\(=>\dfrac{x}{2}=\dfrac{y}{3}=k\)
=> x = 2k và y = 3k
Thay vào x.y = 96
(2k . 3k) = 96
\(6k^2=96\)
\(k^2=96:6\)
\(k^2=16\)
\(k=-4\) hoặc \(+4\)
Với k = - 4 => x = 2 . ( - 4 ) = - 8
y = 3 . ( - 4) = - 12
Với k = 4 => x = 2 . 4 = 8
y = 3 . 4 = 12
\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
Ta có \(\frac{x+5}{2}=\frac{y-2}{3}\)và \(x-y=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y-2}{2-3}=\frac{x-y+5-2}{2-3}=\frac{-10+5-2}{2-3}=\frac{-7}{-1}=7\)
=> \(\frac{x+5}{2}=7\)=> x + 5 = 14 => x = 9
và \(\frac{y-2}{3}=7\)=> y - 2 = 21 => y = 23
Ta có:\(\frac{3}{5}x=\frac{2}{3}y\)
\(\Leftrightarrow\left(\frac{3}{5}x\right)^2=\left(\frac{2}{3}y\right)^2\)
\(\Leftrightarrow\frac{9}{25}x^2=\frac{4}{9}y^2\left(2\right)\)
Mà \(x^2-y^2=38\Rightarrow x^2=38+y^2\left(1\right)\)
Lấy (1) thay vào (2) ta đc:\(\frac{9}{25}\left(38+y^2\right)=\frac{4}{9}y^2\)
\(\Leftrightarrow\frac{342}{25}+\frac{9}{25}y^2-\frac{4}{9}y^2=0\)
\(\Leftrightarrow\frac{19}{225}y^2=\frac{342}{25}\)
\(\Leftrightarrow\)\(y=\sqrt{162}\)
Ko bt có đúng ko mong bn kiểm tra lại rồi nói với mk
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{x+y}{2+5}\)=\(\dfrac{-21}{7}\)=-3
=>\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=5x=2y
=>x=5.-3=-15
=>y=2.-3=-6
Vậy x=-15;y=6
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
1/ a, Ta có :
\(x-2y+3z=35\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)
Vậy ..
Đặt k = \(\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow x=4k,y=7k\)
Từ x.y = 112, ta có: 4k.7k = 112
\(\Rightarrow\) \(28k^2\) = 112
\(\Rightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
Có 2 trường hợp xảy ra:
TH1: k = -2
\(\Rightarrow x=-8,y=-14\)
TH2: k = 2
\(\Rightarrow x=8,y=14\)
Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-8\\y=-14\end{matrix}\right.\\\left\{{}\begin{matrix}x=8\\y=14\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{x}{4}=\dfrac{y}{7}\)
\(\Rightarrow7.x=4.y\)
\(\Rightarrow x=\dfrac{4}{7}.y\)
Mà \(x.y=112\)
hay \(\dfrac{4}{7}.y.y=112\)
\(y^2=196\)
\(\Rightarrow\left\{{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
Vậy \(y=14;x=8\)
\(y=-14;x=-8\)
\(\dfrac{x}{5}=\dfrac{y}{2}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
\(\Rightarrow xy=10k^2=1000\Rightarrow k=\pm10\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=50\\y=20\end{matrix}\right.\\\left\{{}\begin{matrix}x=-50\\y=-20\end{matrix}\right.\end{matrix}\right.\)