Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đại lượng y là hàm số của x vì với mỗi giá trị của x (thuộc tập hợp {-3; -1; 0; 2; 4}) ta luôn xác định được chỉ một giá trị tương ứng của y (y luôn bằng 1).
b) Đại lượng y không là hàm số của x vì với x = 1 ta xác định được hai giá trị tương ứng của y là y = 1 và y = 2.
a) Điểm \(A\left( {20;10} \right);B\left( {22;11} \right);C\left( {24;12} \right);D\left( {26;13} \right);E\left( {28;14} \right);D\left( {30;15} \right)\)
Ta thấy mỗi cặp giá trị \(x;y\) tương ứng trong bảng là tọa độ của các điểm \(A;B;C;D;E;F\).
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
a) Ta có $f(-4)=\frac{4}{-4}=-1$; $f(8)=\frac{4}{8}=\frac{1}{2}$.
b)
x | -2 | -1 | 2 | 3 | $\frac{1}{2}$ |
y = f(x) | -2 | -4 | 2 | $\frac{4}{3}$ | 8 |
a) f(x) = 70 ⇒ x = 30
b) f(x) = 95 ⇒ x = 55
c) f(x) = 0 ⇒ x = −40
a) Dùng trong công cụ để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.
b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:
Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.
Chọn công cụ → Chọn → Chọn điểm A → Chọn điểm C.
Chọn công cụ → Chọn → Chọn điểm B → Chọn điểm C.
Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 6.
Chọn công cụ → Chọn → Nháy chuột lần lượt vào các điểm A, B.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.
Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào đường thẳng vừa vẽ.
Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.
- Hình a:
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}x \Leftrightarrow 6 = \frac{1}{2}x \Leftrightarrow x = 6:\frac{1}{2} = 12\)
- Hình b:
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow 7 = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow \left( {x + 3} \right) = 7:\frac{1}{2} = 14\)
\( \Rightarrow x = 14 - 3 \Leftrightarrow x = 11\).
- Hình c
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\[\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}.58 \Leftrightarrow \left( {5x - 1} \right) = \frac{1}{2}.58\]
\[ \Leftrightarrow \left( {5x - 1} \right) = 29 \Leftrightarrow 5x = 30 \Leftrightarrow x = 30:5 \Leftrightarrow x = 6\].
a: MN là đường trung bình
=>MN=BC/2
=>x=6*2=12
b: MN là đường trung bình
=>2x+3=2*7=14
=>2x=11
=>x=11/2
c: MN là đường trung bình
=>5x-1=58/2=29
=>5x=30
=>x=6
a) Dùng trong công cụ để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn → Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.
Với \(x = 4\) ta được. \(y = 2.4 + 3 = 11\)
Với \(x = 6\) ta được. \(y = 2.6 + 3 = 15\)
\(x\)
1
2
3
4
6
\(y = 2x + 3\)
5
7
9
11
15